精英家教网 > 高中数学 > 题目详情
9.已知点P(x,y)是圆(x+2)2+y2=1上任意一点,则$\frac{y-2}{x-1}$的最大值为$\frac{3+\sqrt{3}}{4}$.

分析 $\frac{y-2}{x-1}$表示圆上的点P(x,y)与点M(1,2)连线的斜率,设为k,则过点M的圆的切线方程为y-2=k(x-1),由圆心到切线的距离等于半径,求得k的值,可得$\frac{y-2}{x-1}$的最大值.

解答 解:$\frac{y-2}{x-1}$表示圆上的点P(x,y)与点M(1,2)连线的斜率,
设为k,则过点M的圆的切线方程为y-2=k(x-1),
即 kx-y+2-k=0,由圆心到切线的距离等于半径,可得$\frac{|-2k-0+2-k|}{\sqrt{{k}^{2}+1}}$=1,求得k=$\frac{3±\sqrt{3}}{4}$,
故$\frac{y-2}{x-1}$的最大值为$\frac{3+\sqrt{3}}{4}$.
故答案为:$\frac{3+\sqrt{3}}{4}$.

点评 本题主要考查直线的斜率公式,直线和圆相切的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列说法中错误的是(  )
A.“|x|>1”是“x>1”的必要不充分条件.
B.若命题p:?x∈R,2x<3.则¬p:?x∈R,2x≥3.
C.若p∧q为假命题,则p∨q也为假命题.
D.命题“若x+y≠5,则x≠2或y≠3”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数y=sin2x的图象向下平移1个单位,再向右平移$\frac{π}{4}$单位,则所得图象的函数解析式为(  )
A.y=-cos2xB.y=-2sin2xC.y=-2cos2xD.y=sin(2x-$\frac{π}{4}$)-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若向量$\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$的数量积为6,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.当实数a取何值时,在复平面内与复数z=(m2-4m)+(m2-m-6)i对应点满足下列条件?
(1)在第三象限;
(2)在虚轴上;
(3)在直线x-y+3=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知扇形AOB的周长为8.
(1)若这个扇形的面积为3,求其圆心角的大小;
(2)求该扇形的面积取得最大时,圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.
(1)求频率分布直方图中a的值;
(2)分别求出这组数据的中位数与成绩在[50,60)中的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把一根长为30cm的木条锯成两段,分别做钝角三角形ABC的两边AB和BC,且∠ABC=120°,当第三边AC最短时,边AB的长为15cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰有3个连在一起,则不同的停放方法有72种.

查看答案和解析>>

同步练习册答案