精英家教网 > 高中数学 > 题目详情
13.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过抛物线C2:y2=2px(p>0)的焦点,且双曲线的渐近线与抛物线的准线围成一个等边三角形,则双曲线C1的离心率是(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

分析 求得抛物线的焦点坐标和准线方程,可得p=2a,求得双曲线的渐近线方程,联立准线方程,可得等边三角形的边长和高,可得a=$\sqrt{3}$b,由a,b,c的关系和离心率公式,计算即可得到所求值.

解答 解:抛物线C2:y2=2px(p>0)的焦点为($\frac{p}{2}$,0),
由题意可得a=$\frac{p}{2}$,
双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
抛物线的准线方程为x=-$\frac{p}{2}$,
代入渐近线方程可得交点为(-a,b),(-a,-b),
由双曲线的渐近线与抛物线的准线围成一个等边三角形,
可得边长为2b,高为a,
即有a=$\sqrt{3}$b,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{2\sqrt{3}}{3}$a,
即有e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和抛物线的焦点和准线方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E为AB的中点,将四边形AEFD沿EF折起使面AEFD⊥面EBCF,过E作EF∥AD,
(1)若G为DF的中点,求证:EG∥面BCD;
(2)若AD=2,试求多面体AD-BCFE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若圆(x-2)2+y2=1与双曲线C:$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}=1$(a>0)的渐近线相切,则a=$\sqrt{3}$;双曲线C的渐近线方程是y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线4x2-y2=1的一条渐近线与直线tx+y+1=0垂直,则t=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C的两条渐近线为l1,l2,过右焦点F作FB∥l1且交l2于点B,过点B作BA⊥l2且交于l1于点A,若AF⊥x轴,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上任意一点,且它到双曲线的两条渐近线的距离之积为定值3,则$\frac{1}{a^2}$+$\frac{1}{b^2}$=(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如题(19)图,四边形ABCD为菱形,四边形BDEF为F平行四边形,平面BDEF⊥平面ACE,设AC∩BD=O,AB=AC=2,BF=$\sqrt{3}$.
(Ⅰ)证明:平面BDEF⊥平面ABCD,
(Ⅱ)若点D到平面ACE的距离为$\frac{\sqrt{3}}{2}$,求二面角C-EF-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知物物线x2=4y的焦点为F,准线为l,经过l上任意一点P作抛物线x2=4y的两条切线,切点分别为A、B.
(I)求证:PA⊥PB;
(2)求$\overrightarrow{AF}$$•\overrightarrow{FB}$-$\overrightarrow{PF}$2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况,我们采用系统抽样的方法,则抽样的间隔为(  )
A.8B.9C.9.5D.10

查看答案和解析>>

同步练习册答案