精英家教网 > 高中数学 > 题目详情
3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E为AB的中点,将四边形AEFD沿EF折起使面AEFD⊥面EBCF,过E作EF∥AD,
(1)若G为DF的中点,求证:EG∥面BCD;
(2)若AD=2,试求多面体AD-BCFE体积.

分析 (1)翻折前,有直角梯形的性质可知四边形AEFD是矩形,得出DF,FC的长,翻折后,取DC的中点H,连接GH,BH,则可证四边形EGHB是平行四边形,得出EG∥BH,故EG∥面BCD;
(2)将多面体分解成四棱锥B-AEFD和三棱锥D-BCF,分别计算两个棱锥的体积.

解答 证明:(1)在直角梯形ABCD中,
∵E是AB中点,∴AE=EB=$\frac{1}{2}AB=1$,
∵EF∥AD,AD⊥AB,AB∥DC,
∴四边形AEFD是矩形,
∴DF=AE=1,CF=CD-DF=2.
翻折后,取DC的中点H,连接GH,BH,
则$GH∥FC,GH=\frac{1}{2}FC$=1,
∵EB=1,EB∥CF,
∴GH=EB,且GH∥EB,
∴四边形EGHB为平行四边形,
∴EG∥BH,∵BH?面BDC,EG?平面BCD,
∴EG∥面BDC.
(2)平面ADEF⊥平面BEFC,平面ADEF∩平面BEFC=EF,BE⊥EF,DF⊥EF,
∴BE⊥平面AEFD,DF⊥平面BCFE,
∴VB-AEFD=$\frac{1}{3}{S}_{矩形AEFD}•BE$=$\frac{1}{3}×1×2×1=\frac{2}{3}$,
VD-BCF=$\frac{1}{3}{S}_{△BCF}•DF$=$\frac{1}{3}×\frac{1}{2}×2×2×1=\frac{2}{3}$,
∴几何体AD-BCFE的体积V=VB-AEFD+VD-BCF=$\frac{4}{3}$.

点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,三棱锥P-ABC的体积为12,D为PB中点,且EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,则三棱柱BEF-DMN的体积为$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知倾斜角为$\frac{π}{3}$的直线与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A,B两点,M(4,2)是弦AB的中点,则双曲线C的离心率是(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z=$\frac{1-2i}{3-i}$(i为虚数单位),则z的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1<x<3},B={x|x>2},则A∩B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1、F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过点F1的直线与双曲线C的左、右两支分别交于P、Q两点,|F1P|、|F2P|、|F1Q|成等差数列,且∠F1PF2=120°,则双曲线C的离心率是(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线C的离心率为2,且△AOB的面积为$\sqrt{3}$,则△AOB的内切圆的半径为2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过抛物线C2:y2=2px(p>0)的焦点,且双曲线的渐近线与抛物线的准线围成一个等边三角形,则双曲线C1的离心率是(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案