精英家教网 > 高中数学 > 题目详情
1.双曲线4x2-y2=1的一条渐近线与直线tx+y+1=0垂直,则t=±$\frac{1}{2}$.

分析 求得双曲线的渐近线方程,直线tx+y+1=0的斜率为-t,运用两直线垂直的条件:斜率之积为-1,计算即可得到所求值.

解答 解:双曲线4x2-y2=1即为$\frac{{x}^{2}}{\frac{1}{4}}$-y2=1,
可得渐近线为y=±2x,
直线tx+y+1=0的斜率为-t,
而渐近线的斜率为±2,
由两直线垂直的条件:斜率之积为-1,可得
-t=±$\frac{1}{2}$,
即有t=±$\frac{1}{2}$.
故答案为:±$\frac{1}{2}$.

点评 本题考查双曲线的渐近线方程的运用,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线C的离心率为2,且△AOB的面积为$\sqrt{3}$,则△AOB的内切圆的半径为2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直角三角形ABC中,A=90°,B=60°,B,C为双曲线E的两个焦点,点A在双曲线E上,则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知底面为正三角形的三棱柱内接于半径为1的球,则三棱柱的体积的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD的边长为2$\sqrt{2}$,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,且FO⊥平面ABCD,FO=$\sqrt{3}$.
(1)求证:FC∥平面ADE;
(2)求三棱锥O-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过抛物线C2:y2=2px(p>0)的焦点,且双曲线的渐近线与抛物线的准线围成一个等边三角形,则双曲线C1的离心率是(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线y2=2px(p>0),过点(4,0)作直线l交抛物线于A、B两点,且以AB为直径的圆过原点O.
(1)求抛物线的方程;
(2)过抛物线上的定点M(1,$\sqrt{2p}$)作两条关于直线x=1对称的直线,分别交抛物线于C,D两点,连接CD,试问:直线CD的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=4.

查看答案和解析>>

同步练习册答案