ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
3
2
bn=0£¨t¡ÊR£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬ÊÇ·ñ´æÔÚm£¬Ê¹µÃTm=1180³ÉÁ¢£¿Èô´æÔÚÇó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,ÊýÁеÄÓ¦ÓÃ,µÈ±ÈÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÌõ¼þÇó³ö¹«±È£¬È»ºóÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÀûÓÃÒÑÖªÌõ¼þÇó³öbnµÄ±í´ïʽ£¬ÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬¼´¿ÉÇó³ötµÄÖµ£»
£¨3£©Ê×ÏÈÇó³öÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍ£¬È»ºóÇó³öa9£¼1180£¼a10£¬ÔÙÇó³öÓÖa10ÔÚÊýÁÐ{bn}ÖеÄÏîÊý£¬½ø¶øÇó³ömµÄÖµ£®
½â´ð£º ½â£º£¨1£©ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏ
¿ÉµÃ£º6a3=8a1+a5£¬6¡Á2q2=8¡Á2+2¡Áq4£¬½âµÃq=2£®
¡àan=2n¡­4·Ö
£¨2£©ÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
3
2
bn=0£¨t¡ÊR£¬n¡ÊN*£©£®
µÃbn=
2n2-tn
n-
3
2
£¬ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬
ÔòÓÉb1+b3=2b2£¬µÃt=3¡­8·Ö
µ±t=3ʱ£¬bn=2n£¬ÓÉbn-bn-1=2£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁС­10·Ö
£¨3£©£©¡ßan=2n
¡àÔÚÊýÁÐ{bn}ÖУ¬ak=2k£®ak+1=2k+1£®
¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬¿ÉµÃÒ»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬
ÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍΪ[2+22+¡­+2m-1+2m]+£¨2¡Á2+2¡Á4+¡­+4m£©=2m2+2m+1+
2m£®
¡ß2¡Á92+29+2¡Á9=692£¼1180£¼2¡Á102+210+2¡Á10=1244£¬¼´a9£¼1180£¼a10£®
´æÔÚm£¬Ê¹µÃTm=1180£¬
´æÔÚm=9+£¨b1+b2+¡­+b8£©+8=9+2+4+6+8+10+14+16+8=89      ¡­16·Ö£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽÒÔ¼°ÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴ󣮶ÔÓÚ²»µÈʽºã³ÉÁ¢ÎÊÌâͨ¹ýת»¯³Éº¯Êý×îÖµÎÊÌâÀ´½â¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÈñ½Ç¡÷ABCÖУ¬BC=5£¬sinA=
4
5
£®
£¨1£©Èçͼ1£¬Çó¡÷ABCÍâ½ÓÔ²µÄÖ±¾¶£»
£¨2£©Èçͼ2£¬µãIΪ¡÷ABCµÄÄÚÐÄ£¬BA=BC£¬ÇóAIµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=£¨1-x£©£¨x2+ax+b£©µÄͼÏó¹ØÓڵ㣨-2£¬0£©¶Ô³Æ£¬x1£¬x2·Ö±ðÊÇf£¨x£©µÄ¼«´óÖµºÍ¼«Ð¡Öµµã£¬Ôòx1-x2=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

PÊÇË«ÇúÏß
x2
64
-
y2
36
=1
ÉÏÒ»µã£¬F1¡¢F2ÊÇË«ÇúÏßµÄÁ½¸ö½¹µã£¬ÇÒ|PF1|=17£¬Ôò|PF2|µÄֵΪ£¨¡¡¡¡£©
A¡¢33B¡¢33»ò1
C¡¢1D¡¢25»ò9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏß
x2
m
-
y2
n
=1µÄÀëÐÄÂÊΪ3£¬ÓÐÒ»¸ö½¹µãÓëÅ×ÎïÏßy=
1
12
x2µÄ½¹µãÏàͬ£¬ÄÇ  Ã´Ôòm=
 
£¬n=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax2+bx+c£¨0£¼3a£¼b£©£¬ÇÒf£¨x£©¡Ý0¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£®
£¨I£©µ±b=4
a
ʱ£¬ÇócµÄ×îСֵ£»
£¨¢ò£©µ±
f(-2)
f(2)-f(0)
È¡×îСֵʱ£¬¶ÔÈÎÒâµÄx1£¬x2¡Ê[-3a£¬-a]¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü4a£¬
ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßx2=
1
a
yµÄ×¼Ïß·½³ÌÊÇy-2=0£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A¡¢
1
8
B¡¢-
1
8
C¡¢8
D¡¢-8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÒÑÖªa=4£¬b=4
3
£¬A=30¡ã£¬BΪÈñ½Ç£¬ÄÇô½ÇA£¬B£¬CµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A¡¢A£¾B£¾C
B¡¢B£¾A£¾C
C¡¢C£¾B£¾A
D¡¢C£¾A£¾B

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬0£¼¦Õ£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼ£º
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ¼°µ¥µ÷µÝÔöÇø¼ä£»
£¨2£©½«º¯Êýf£¨x£©Í¼ÏóÏòÓÒÆ½ÒÆ
¦Ð
6
¸öµ¥Î»³¤¶ÈµÃµ½º¯Êým£¨x£©µÄͼÏó£¬g£¨x£©=2bcos2x£¨b£¾0ÇÒb¡ÊR£©£¬G£¨x£©=m£¨x£©+g£¨x£©£¬µ±x¡Ê[0£¬
¦Ð
4
]ʱ£¬Çóº¯ÊýG£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸