精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ax3+x2+bx+2中a,b为参数,已知曲线y=f(x)在(1,f(1))处的切线方程为y=6x-1,则f(-1)=1.

分析 求出函数的导数,计算f(1),f′(1)的值,求出切线方程,从而得到关于a,b的方程组,解出即可.

解答 解:∵f(x)=ax3+x2+bx+2,
∴f′(x)=3ax2+2x+b,
故f(1)=a+b+3,f′(1)=3a+b+2,
故切线方程是:
y-(a+b+3)=(3a+b+2)(x-1),
即y=(3a+b+2)x-2a+1,
而y=6x-1,
则$\left\{\begin{array}{l}{3a+b+2=6}\\{-2a+1=-1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$,
故f(x)=x3+x2+x+2,
则f(-1)=1,
故答案为:1.

点评 本题考查了切线方程问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=2-3x-$\frac{4}{x}$(x>0)的最值情况是(  )
A.有最小值2-4$\sqrt{3}$B.有最大值2-4$\sqrt{3}$C.有最小值2+4$\sqrt{3}$D.有最大值2+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2-6x-8y+24=0,则x2+y2的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足z=1+i(i为虚数单位),则复数z的共轭复数$\overline z$的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x∈R|f(x)=log2(x-2)},B={y∈R|y=log2(x-2)},则A∩B=(  )
A.(0,2)B.(0,2]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.二项式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n展开式中所有二项式系数和为64,展开式中的常数项为-160,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+ax2,g(x)=$\frac{b}{x}$+x,且直线y=-$\frac{1}{2}$是曲线y=f(x)的一条切线.
(Ⅰ)求实数a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;
(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,AB=BC=1,∠ABC=$\frac{π}{2}$,BB1=2,∠BCC1=$\frac{π}{3}$.
(1)求证:BC⊥平面ABC1
(2)若侧面BB1C1C⊥平面ABC,求三棱锥C1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点(1,0)且与x轴垂直的直线方程是(  )
A.y=1B.x+1=0C.y=0D.x-1=0

查看答案和解析>>

同步练习册答案