分析 (1)利用余弦定理计算BC1,得出BC⊥BC1,结合BC⊥AB便可得出BC⊥平面ABC1;
(2)利用面面垂直的性质得出BC1⊥平面ABC,于是V${\;}_{{C}_{1}-ABC}$=$\frac{1}{3}$S△ABC•BC1.
解答 (1)证明:在△BCC1中,∵BC=1,CC1=BB1=2,∠BCC1=$\frac{π}{3}$,
∴BC1=$\sqrt{1+4-2×1×2×cos\frac{π}{3}}$=$\sqrt{3}$,
∴BC2+BC12=CC12,即BC⊥BC1,
又BC⊥AB,AB∩BC1=B,
∴BC⊥平面ABC1.
(2)解:由(1)知BC⊥BC1,
又∵侧面BB1C1C⊥平面ABC,侧面BB1C1C∩平面ABC=BC,BC1?平面BB1C1C,
∴BC1⊥平面ABC,
∴V${\;}_{{C}_{1}-ABC}$=$\frac{1}{3}$S△ABC•BC1=$\frac{1}{3}×\frac{1}{2}×1×1×\sqrt{3}$=$\frac{\sqrt{3}}{6}$.
点评 本题考查了线面垂直的判定,面面垂直的性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 晚上 | 白天 | 合计 | |
| 男婴 | 24 | 31 | 55 |
| 女婴 | 8 | 26 | 34 |
| 合计 | 32 | 57 | 89 |
| A. | 80% | B. | 90% | C. | 95% | D. | 99% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com