精英家教网 > 高中数学 > 题目详情
7.计算:
S=(1+2)(1+22)(1+24)(1+28)(1+216)(1+232)+1.

分析 利用平方差公式计算即可.

解答 解:S=(1+2)(1+22)(1+24)(1+28)(1+216)(1+232)+1
=(2-1)(2+1)(1+22)(1+24)(1+28)(1+216)(1+232)+1,
=264-1+1
=264,.

点评 本题考查了平方差公式,关键是凑成平方差公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.
(1)按下列要求建立函数关系;
(i)设AN=x米,将S表示为x的函数;
(ii)设∠BMC=θ(rad),将S表示为θ的函数.
(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果三点A(2m,$\frac{5}{2}$),B(4,-1),C (-4,-m)在同一条直线上,则常数m的值为$\frac{3±\sqrt{57}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设A={x|x2+(2a-3)x-3a=0},B={x|x2+(a-3)x+a2-3a=0},若A≠B,A∩B≠∅,试求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A={2,3,a2+2a-3},B={x||x-a|<2}
(1)当a=2时,求A∩B;
(2)若0∈A∩B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(重点中学做)如图所示,设A,B分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点和上顶点,过原点O作直线交线段AB于点M(异于点A,B),交椭圆于C,D两点(点C在第一象限内),△ABC与△ABD的面积分别为S1与S2
(1)若M是线段AB的中点,直线OM的方程为y=$\frac{\sqrt{3}}{3}$x,点P(3,1)在椭圆E上,求椭圆E的方程;
(2)当点M在线段AB上运动时,求$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设圆C:(x-3)2+(y-2)2=1(a>0)与直线y=$\frac{3}{4}$x相交于P、Q两点,则|PQ|=$\frac{4\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过曲线C上的一点Q(1,$\frac{8}{3}$)作两条直线分别交曲线于A,B两点,已知QA,QB的斜率互为相反数,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若圆(x-1)2+y2=r2(r>0)与曲线x(y-1)=1没有公共点,则半径r的取值范围是(  )
A.0<r<$\sqrt{2}$B.0<r<$\frac{{\sqrt{11}}}{2}$C.0<r<$\sqrt{3}$D.0<r<$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

同步练习册答案