精英家教网 > 高中数学 > 题目详情
19.设集合A={x|$\frac{x-2}{x+1}$<0},B={x|y=$\sqrt{1-{x}^{2}}$},则A∩B=(  )
A.{x|-1<x≤1}B.{x|-1<x<1}C.{x|-1≤x<1}D.{-1,1}

分析 求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出两集合的交集即可.

解答 解:由A中不等式变形得:(x-2)(x+1)<0,
解得:-1<x<2,即A={x|-1<x<2},
由B中y=$\sqrt{1-{x}^{2}}$,得到1-x2≥0,即x2-1≤0,
解得:-1≤x≤1,即B={x|-1≤x≤1},
则A∩B={x|-1<x≤1},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.(1+2x)(1-x)4展开式中,x2项的系数为-2(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正项数列{an}的前n项和为Sn,且a1=4,4Sn=an•an+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{$\frac{16}{{a}_{2n}^{2}}$}的前n项和为Tn,求证:$\frac{n}{n+1}$<Tn<2-$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:?α∈R,sin(π-α)=cosα;命题q:“0<a<4”是“关于x的不等式ax2+ax+1>0的解集是实数集R”的充分必要条件,则下面结论正确的是(  )
A.p是假命题B.q是真命题C.“p∧q”是假命题D.“p∨q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于数列{an},a1=a$+\frac{1}{a}$(a>0.,且a≠1),an+1=a1-$\frac{1}{{a}_{n}}$.
(1)求a2,a3,a4,并猜想这个数列的通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(x,y-1)且$\overrightarrow{a}$∥$\overrightarrow{b}$,若x,y均为正数,则$\frac{3}{x}$+$\frac{2}{y}$的最小值是(  )
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2$\sqrt{3}$,$sinA=\frac{1}{2}$,且b<c,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的各项均为正数,且a1,22,a2,24,..,an,22n,…成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)记Sn为数列{an}的前n和,若Sk≥30(2k+1),整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2016)=2016.

查看答案和解析>>

同步练习册答案