精英家教网 > 高中数学 > 题目详情
1.已知圆C:x2+y2-2y-1=0,直线l:y=x+m,则C的圆心坐标为(0,1),若l与C相切,则m=-1或3.

分析 求出圆C的圆心坐标C(0,1),半径r=$\sqrt{2}$,由圆C:x2+y2-2y-1=0,直线l:y=x+m相切,得圆心C(0,1)到直线l:y=x+m的距离d=r,由此能求出m的值.

解答 解:∵圆C:x2+y2-2y-1=0,
∴圆C的圆心坐标C(0,1),半径r=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,
∵圆C:x2+y2-2y-1=0,直线l:y=x+m,l与C相切,
∴圆心C(0,1)到直线l:y=x+m的距离d=$\frac{|0-1+m|}{\sqrt{1+1}}$=$\frac{|m-1|}{\sqrt{2}}$=r=$\sqrt{2}$,
解得m=-1或m=3.
故答案为:(0,1);-1或3.

点评 本题考查圆心坐标和实数值的求法,是基础题,解题时要认真审题,注意圆的性质及直线与圆相切的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-2),x≥1}\end{array}\right.$则f(log27)的值为$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(π-α)-cos(π-α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求下列各式的值:
(1)sinα•cosα;
(2)sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,则圆心C的轨迹方程为2x+y-6=0,直线l经过点(-1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的一般式方程为2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情.2015年中秋节期间,小鲁在自己的微信校友群,向在线的甲、乙、丙、丁四位校友随机发放红包,发放的规则为:每次发放1个,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少得到1个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有5元,1个红包有10元,记这段时间内乙所得红包的总钱数为X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,点A,B是圆x2+y2-6x+5=0上的两个动点,且满足$|AB|=2\sqrt{3}$,则$|\overrightarrow{OA}+\overrightarrow{OB}|$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过圆x2+y2=1上一点作该圆的切线与x轴、y轴的正半轴交于A,B两点,则|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|有(  )
A.最大值$\sqrt{2}$B.最小值$\sqrt{2}$C.最大值2D.最小值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过点A(0,a)作直线与圆E:(x-2)2+y2=1交于B,C两点,在线段BC上取满足BP:PC=AB:AC的点P.
(Ⅰ)求P点的轨迹方程;
(Ⅱ)设直线2x-ay-3=0与圆E交于M、N两点,求△EMN(E为圆心)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆x2+y2=4,则经过点M($\sqrt{3}$,1)的圆的切线方程为$\sqrt{3}x$+y-4=0;若直线ax-y+4=0与圆相交于A、B两点,且|AB|=2$\sqrt{3}$,则a=$±\sqrt{15}$.

查看答案和解析>>

同步练习册答案