精英家教网 > 高中数学 > 题目详情
6.一个半径为1的球对称的消去了三部分,其俯视图如图所示,那么该立体图形的表面积为(  )
A.B.C.D.

分析 利用已知条件,判断几何体的形状,然后求解几何体的表面积.

解答 解:由题意可知解题是一个球,均分成6部分,
如图,彩色部分是被消去了三部分,剩余白色的3部分的几何体,
该立体图形的表面积为:2π•12+3×π•12=5π.
故选:C.

点评 本题考查几何体的三视图的应用,表面积的求法,判断几何体的形状是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知平面上三点A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC为直角三角形,其中角B是直角,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列式子:
13=(1×1)2
13+23+33=(2×3)2
l3+23+33+43+53=(3×5)2
l3+23+33+43+53+63+73=(4×7)2,…
由归纳思想,第n个式子13+23+33+…+(2n-1)3=[n(2n-1)]2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序,若输出的S=$\frac{2017}{2018}$,则输入的正整数n=(  )
A.2 018B.2 017C.2 016D.2 015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,则$\overrightarrow{a}$•$\overrightarrow{a}$+$\overrightarrow{a}$•$\overrightarrow{b}$等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1+$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={a2+8|a∈N},B={b2+29|b∈N},若A∩B=P,则P中元素个数为(  )
A.0B.1C.2D.至少3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xoy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos(θ-$\frac{π}{3}$)=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.
(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;
(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;
(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重76公斤的职工被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB为圆O的一条弦,C为圆O外一点.CA,CB分别交圆O于D,E两点.若AB=AC,EF⊥AC,垂足为F,求证:F为线段DC的中点.

查看答案和解析>>

同步练习册答案