精英家教网 > 高中数学 > 题目详情
14.当0<a<2时,直线l1:ax-2y=2a-4,直线${l_2}:2x+{a^2}y=2{a^2}+4$与坐标轴围成的一个四边形,求该四边形面积的最小值以及取得最小值时的a的值.

分析 如图所示,联立$\left\{\begin{array}{l}{ax-2y=2a-4}\\{2x+{a}^{2}y=2{a}^{2}+4}\end{array}\right.$,解得yE=2.根据S四边形OCEA=S△BCE-S△OAB即可得出.

解答 解:∵0<a<2,
可得l1:ax-2y=2a-4,与坐标轴的交点A(0,-a+2),B(2-$\frac{4}{a}$,0).
l2:2x+a2y=2a2+4,与坐标轴的交点C(a2+2,0),D(0,2+$\frac{4}{{a}^{2}}$).
联立 $\left\{\begin{array}{l}{ax-2y=2a-4}\\{2x+{a}^{2}y=2{a}^{2}+4}\end{array}\right.$,
解得yE=2.
∴S四边形OCEA=S△BCE-S△OAB
=$\frac{1}{2}$|BC|•yE-$\frac{1}{2}$|OA|•|OB|
=a2+$\frac{4}{a}$-$\frac{1}{2}$×(2-a)×($\frac{4}{a}$-2)
=a2-a+4
=(a-$\frac{1}{2}$)2+$\frac{15}{4}$≥$\frac{15}{4}$,当a=$\frac{1}{2}$时取等号.
∴l1,l2与坐标轴围成的四边形面积的最小值为$\frac{15}{4}$.

点评 本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,称T为函数f(x)的广义周期,称M为周距
(1)证明函数f(x)=x2不是广义周期函数;
(2)试判断函数f(x)=kx+b+Asin(ωx+φ)(k、A、ω、φ为常数,k≠0,A>0,ω>0)是否为广义周期函数,若是,请求出它的一个广义周期T和周距M,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P是双曲线C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆C2:x2+y2=a2+b2的一个交点,且∠PF1F2=60°,其中F1、F2分别为双曲线C1的左、右焦点,则双曲线C1的离心率为1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知集合A={x||x-1|<1},$B=\{x|\frac{2}{x-1}≥1\}$,$C=\left\{{x\left|{lg(2ax)<lg(a+x),a>\frac{1}{2}}\right.}\right\}$,
(Ⅰ)求A∩B
(Ⅱ)若“x∈A∩B”是“x∈C”的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知幂函数y=xa,a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},其中奇函数的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在同一坐标系中,函数y=3-x与y=3x的图象之间的关系是(  )
A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线2x+y+7=0的倾斜角为(  )
A.锐角B.直角C.钝角D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是11.
7816 6572 0802 6316 0702 4369 9728 1198
3204 9234 4935 8200 3623 4869 6938 7481.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l的斜率为$-\frac{{\sqrt{3}}}{3}$,则该直线l的倾斜角为(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

同步练习册答案