精英家教网 > 高中数学 > 题目详情
19.在同一坐标系中,函数y=3-x与y=3x的图象之间的关系是(  )
A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称

分析 根据指数函数的图象和性质直接判断即可.

解答 解:函数y=3-x与y=3x的图象之间的关系是关于y轴对称,
故选:D.

点评 本题主要考查函数图象关系的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设a=log0.70.8,b=log1.10.9,c=1.10.9,则(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.填空:
(1)${C}_{3n}^{38-n}{+C}_{21+n}^{3n}$=466;
(2)${C}_{13+n}^{3n}{+C}_{12+n}^{3n-1}{+C}_{11+n}^{3n-2}+…{+C}_{2n}^{17-n}$=124;
(3)${C}_{3}^{3}{+C}_{4}^{3}{+C}_{5}^{3}+…{+C}_{10}^{3}$=330.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直角坐标系中,$α=\frac{π}{4}$,β=-45°,两角始边为x轴的非负半轴,则α与β的终边(  )
A.关于x轴对称B.关于y=x对称C.关于y轴对称D.关于原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.当0<a<2时,直线l1:ax-2y=2a-4,直线${l_2}:2x+{a^2}y=2{a^2}+4$与坐标轴围成的一个四边形,求该四边形面积的最小值以及取得最小值时的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的首项为21,公差为-2,则当n=11时,该数列的前n项和Sn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间三个力$\overrightarrow{F_1}$,$\overrightarrow{F_2}$,$\overrightarrow{F_3}$的大小都等于2,且两两夹角都为60°,则这三个力的合力$\overrightarrow F$的大小为$2\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列五个函数①y=x${\;}^{\frac{5}{3}}$;②y=x${\;}^{\frac{3}{4}}$;③y=x${\;}^{\frac{1}{3}}$;④y=x${\;}^{\frac{2}{3}}$;⑤y=x-2中,定义域为R的函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若等比数列{a${\;}_{{n}_{\;}}$}的公比为q(q≠0),则关于x、y的二元一次方程组$\left\{\begin{array}{l}{{a}_{1}x+{a}_{3}y=3}\\{{a}_{2}x+{a}_{4}y=-2}\end{array}\right.$的解的情况的下列说法中正确的是(  )
A.对任意q∈R(q≠0),方程组都有唯一解
B.对任意q∈R(q≠0),方程组都无解
C.当且仅当q=-$\frac{2}{3}$时,方程组有无穷多解
D.当且仅当q=-$\frac{2}{3}$时,方程组无解

查看答案和解析>>

同步练习册答案