分析 (1)a1=-1,an+1=SnSn+1.可得Sn+1-Sn=SnSn+1,即$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,即可证明.
(2)由(1)可得:$\frac{1}{{S}_{n}}$=-n,可得Sn=-$\frac{1}{n}$.n≥2时,an=Sn-1Sn=$\frac{1}{n(n-1)}$.即可的出.
(3)bn=|(3n-10)(n2-n)an|,可得n=1时,b1=0,n≥2时,bn=|3n-10|=$\left\{\begin{array}{l}{10-3n,n=2,3}\\{3n-10,n≥4}\end{array}\right.$,对n分类讨论即可得出.
解答 (1)证明:∵a1=-1,an+1=SnSn+1.
∴Sn+1-Sn=SnSn+1,∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,
∴数列{$\frac{1}{{S}_{n}}$}是等差数列,首项为-1,公差为-1.
(2)解:由(1)可得:$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
∴Sn=-$\frac{1}{n}$.
∴n≥2时,an=Sn-1Sn=$\frac{1}{n(n-1)}$.
∴an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
(3)解:∵bn=|(3n-10)(n2-n)an|,
∴n=1时,b1=0,
n≥2时,bn═|(3n-10)(n2-n)$\frac{1}{n(n-1)}$|=|3n-10|=$\left\{\begin{array}{l}{10-3n,n=2,3}\\{3n-10,n≥4}\end{array}\right.$,
∴T1=0,T2=0+10-6=4,T3=0+4+1=5.
n≥4时,数列{bn}的前n项和Tn=5+(3×4-10)+(3×5-10)+…+(3n-10)
=5+$\frac{n(-7+3n-10)}{2}$-(-7-4-1)
=$\frac{3{n}^{2}-17n}{2}$+17.
综上可得:Tn=$\left\{\begin{array}{l}{0,n=1}\\{4,n=2}\\{5,n=3}\\{\frac{3{n}^{2}-17n}{2}+n,n≥4}\end{array}\right.$.
点评 本题考查了等差数列的定义通项公式及其求和公式、绝对值数列求和问题,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,-$\frac{1}{3}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | (-$\frac{2}{3}$,-$\frac{1}{3}$) | D. | (-$\frac{3}{4}$,$\frac{2}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-14,16) | B. | (22,-11) | C. | (6,1) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{30}$ | D. | $\frac{2}{15}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com