分析 (I)由点M在圆C上,代入圆的方程可得$\sqrt{10}$=asin$\frac{π}{4}$,解得a.可得圆C的极坐标方程,利用互化公式可得直角坐标方程.
(II)点P的坐标为(3,$\sqrt{5}$),在直线l上.把直线l的参数方程代入圆的方程:t2-3$\sqrt{2}$t+4=0,可得|PA|+|PB|=|t1|+|t2|=|t1+t2|.
解答 解:(I)∵点M的极坐标为($\sqrt{10}$,$\frac{π}{4}$),圆C的极坐标方程ρ=asinθ,且点M在圆C上,
∴$\sqrt{10}$=asin$\frac{π}{4}$,解得a=2$\sqrt{5}$.
∴圆C的极坐标方程ρ=2$\sqrt{5}$sinθ,即ρ2=2$\sqrt{5}$ρsinθ,化为直角坐标方程:x2+y2=2$\sqrt{5}$y.
(II)点P的坐标为(3,$\sqrt{5}$),在直线l上.
把直线l的参数方程 $\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}$(t为参数),代入圆的方程:t2-3$\sqrt{2}$t+4=0,
∴t1+t2=3$\sqrt{2}$,t1•t2=4,
∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=3$\sqrt{2}$.
点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$ g(x)=$\sqrt{-(x-1)^{2}}$ | B. | f(x)=$\root{3}{{x}^{3}}$ g(x)=($\root{3}{x}$)3 | ||
| C. | f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$ g(x)=$\sqrt{{x}^{2}-1}$ | D. | f(x)=$\frac{x}{x}$ g(x)=x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com