精英家教网 > 高中数学 > 题目详情
4.已知M(-2,7)、N(10,-2),$\overrightarrow{NP}$=2$\overrightarrow{PM}$,则P点的坐标为(  )
A.(-14,16)B.(22,-11)C.(6,1)D.(2,4)

分析 先设出P点的坐标,写出2个向量的坐标,利用2个向量相等,则它们的坐标对应相等.

解答 解:设P(x,y),则$\overrightarrow{NP}$=(x-10,y+2),$\overrightarrow{PM}$=(-2-x,7-y),
∵$\overrightarrow{NP}$=2$\overrightarrow{PM}$,
∴$\left\{\begin{array}{l}{x-10=2(-2-x)}\\{y+2=2(7-y)}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,∴P点的坐标为 (2,4).
故选:D.

点评 本题考查两个向量相等的条件,两个向量相等时,它们的坐标相等,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则“f1(x0,y0)=f2(x0,y0)”是“点M(x0,y0)是曲线C1与C2的交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“乖点”.有同学发现“任何一个三次函数都有“乖点”;任何一个三次函数都有对称中心;且“乖点”就是对称中心.”请你根据这一发现,请回答问题:若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则g($\frac{1}{2011}$)+g($\frac{2}{2011}$)+g($\frac{3}{2011}$)+g($\frac{4}{2011}$)+…+g($\frac{2010}{2011}$)=2010.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{x(x-2),x<a}\\{(x-4)^{2}(x-3),x≥a}\end{array}\right.$,若f(x)在定义域内有且仅有一个极小值点,则实数a的取值范围是(  )
A.[2,3]B.[1,4]C.(-∞,2]∪[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角α终边经过点P(-1,-$\sqrt{2}$),则cosα=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足z(1-i)=-i,则|z|=(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设全集为R,已知A={x|x(x+2)≤x(3-x)+1},则∁RA=(-∞,-$\frac{1}{2}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=-1,an+1=SnSn+1
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设bn=|(3n-10)(n2-n)an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.

查看答案和解析>>

同步练习册答案