精英家教网 > 高中数学 > 题目详情
5.设x>-1,y∈R,则“x+1>y”是“x+1>|y|”的(  )
A.弃要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

分析 根据充分必要条件的定义,分别证明充分性和必要性,从而得出答案.

解答 解:∵x>-1,
∴x+1>0,
∵x+1>|y|,
∴-(x+1)<y<x+1,
∴x+1>y,或x+1>-y,
故“x+1>y”是“x+1>|y|”的必要不充分条件,
故选:C

点评 本题考查了充分必要条件,考查不等式问题,是一道基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“乖点”.有同学发现“任何一个三次函数都有“乖点”;任何一个三次函数都有对称中心;且“乖点”就是对称中心.”请你根据这一发现,请回答问题:若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则g($\frac{1}{2011}$)+g($\frac{2}{2011}$)+g($\frac{3}{2011}$)+g($\frac{4}{2011}$)+…+g($\frac{2010}{2011}$)=2010.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设全集为R,已知A={x|x(x+2)≤x(3-x)+1},则∁RA=(-∞,-$\frac{1}{2}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=-1,an+1=SnSn+1
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设bn=|(3n-10)(n2-n)an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${∫}_{0}^{2}$x(x+1)dx=$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,已知a4=-15,公差d=3,
(1)求数列{an}的通项公式.
(2)求数列{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下选项中的两个函数不是同一个函数的是(  )
A.f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$  g(x)=$\sqrt{-(x-1)^{2}}$B.f(x)=$\root{3}{{x}^{3}}$ g(x)=($\root{3}{x}$)3
C.f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$ g(x)=$\sqrt{{x}^{2}-1}$D.f(x)=$\frac{x}{x}$  g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若O为△ABC所在平面内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则S△OBC:S△AOC:S△ABO=(  )
A.3:2:1B.2:1:3C.1:3:2D.1:2:3

查看答案和解析>>

同步练习册答案