精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=|2x-6|.
(Ⅰ)求不等式f(x)≤x的解集;
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,求实数a的取值范围.

分析 (Ⅰ)由不等式f(x)=|2x-6|≤x,可得$\left\{\begin{array}{l}{x>0}\\{-x≤2x-6≤x}\end{array}\right.$,由此求得x的范围.
(Ⅱ)由题意可得 $\frac{a}{2}$≥|x-3|-|x-1|,利用绝对值的意义求得|x-3|-|x-1|的最小值,可得a的范围.

解答 解:(Ⅰ)由不等式f(x)=|2x-6|≤x,可得$\left\{\begin{array}{l}{x>0}\\{-x≤2x-6≤x}\end{array}\right.$ 
求得2≤x≤6,故不等式的解集为{x|2≤x≤6}.
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,即a≥|2x-6|-2|x-1|,
即$\frac{a}{2}$≥|x-3|-|x-1|.
而|x-3|-|x-1|表示数轴上的x对应点到3对应点的距离减去它到1对应点的距离,
它的最小值为-2,∴$\frac{a}{2}$≥-2,即 a≥-4,故实数a的取值范围为[-4,+∞).

点评 本题主要考查绝对值不等式的解法,绝对值的意义,函数的能成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3000人进行调查,就“是否取消英语听力”的问题进行了问卷调查统计,结果如表:
           态度
调查人群
应该取消应该保留无所谓
在校学生2100人120人y人
社会人士500人x人z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一般地,将扑克牌中的J,Q,K叫花牌,某人从一副已洗均匀的扑克牌(去掉大、小王,共52张)中依次摸取5张,所摸扑克牌中恰好有3张花牌的概率是多少?若X表示摸5张扑克牌中的花牌,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2015年1月1日新《环境保护法》实施后,2015年3月18日,交通运输部发布《关于加快推进新能源汽车在交通运输行业推广应用的实施意见》,意见指出,至2020年,新能源汽车在交通运输行业的应用初具规模,在城市公交、出租汽车和城市物流配送等领域的总量达到30万辆;新能源汽车配套服务设施基本完备,新能源汽车运营效率和安全水平明显提升.随着新能源汽车的迅速发展,关于新能源汽车是纯电动汽车的续航里程(单次充电后能行驶的最大里程)一直是消费者最为关注的话题.
对于这一问题渭南市某高中研究性学习小组从汽车市场上随机抽取n辆纯电动汽车调查其续航里程,被调查汽车的续航里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制如图所示的频率分布直方图.
(1)若续航里程在[100,150)的车辆数为5,求抽取的样本容量n及频率分布直方图中x的值;
(2)在(1)的条件下,若从续航里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续航里程为[250,300]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a${\;}_{n+1}^{2}$=anan+2(an≠0),0<a1<a6=1,则使不等式a1-$\frac{1}{{a}_{1}}$+a2-$\frac{1}{{a}_{2}}$+…+an-$\frac{1}{{a}_{n}}$≤0恒成立的n的最大值是11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a是正数,则同时满足下列条件:$\frac{a}{2}$≤x≤2a;$\frac{a}{2}$≤y≤2a;x+y≥a;x+a≥y;y+a≥x的不等式组表示的平面区域是一个凸六边形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平行四边形中,AC与BD交于点O,$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DO}$,CE的延长线与AD交于点F,若$\overrightarrow{CF}$=$λ\overrightarrow{AC}$+$μ\overrightarrow{BD}$(λ,μ∈R),则λ+μ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求以C(1,1)为圆心,且过圆x2+y2-6x+2y-1=0的圆心的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1,F2,离心率为$\frac{\sqrt{2}}{2}$,A,B是椭圆上不同的两点且△F1AF2的周长为2($\sqrt{2}$+1)
(1)求椭圆的标准方程;
(2)若A,B关于直线y=mx+$\frac{1}{2}$对称,求△AOB面积取最大值时m的值(O为坐标原点)

查看答案和解析>>

同步练习册答案