精英家教网 > 高中数学 > 题目详情
10.在平行四边形中,AC与BD交于点O,$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DO}$,CE的延长线与AD交于点F,若$\overrightarrow{CF}$=$λ\overrightarrow{AC}$+$μ\overrightarrow{BD}$(λ,μ∈R),则λ+μ=-$\frac{1}{3}$.

分析 利用三角形的相似关系,求得$\overrightarrow{GF}$=$\frac{1}{3}$$\overrightarrow{BD}$,再根据向量的加法的三角形法则,求得λ和μ的值.

解答 解:∵△FED∽△CEB,
DF:CD=DE:EA=1:3,
过点F作FG∥BD交AC于G,
FG:DO=2:3,
AG:AO=2:3,
∴$\overrightarrow{GF}$=$\frac{1}{3}$$\overrightarrow{BD}$,
∵$\overrightarrow{CG}$=$\overrightarrow{CO}$+$\overrightarrow{OG}$=$\frac{2}{3}\overrightarrow{CA}$,
∴$\overrightarrow{CF}=\overrightarrow{AG}+\overrightarrow{GF}$=$\frac{2}{3}\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{BD}$,
$\overrightarrow{CF}$=$-\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$,
λ+μ=-$\frac{1}{3}$.
故答案为:-$\frac{1}{3}$.

点评 本题考查根据三角形的相似关系,求得三角各边的比值,再根据向量加法的三角形法则,求得其和向量,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.盒中共有6件除了颜色外完全相同的产品,其中有1件红色,2件白色和3件黑色,从中任取两件,则两件颜色不相同的概率为(  )
A.$\frac{1}{3}$B.$\frac{7}{15}$C.$\frac{3}{5}$D.$\frac{11}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.大学生甲、乙、丙为唐山世园会的两个景区提供翻译服务,每个景区安排一名或两名大学生,则甲、乙被安排到不同景区的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|2x-6|.
(Ⅰ)求不等式f(x)≤x的解集;
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,nan+1=2(n+1)an(n∈N.)
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn
(3)在第(2)问的条件下,若不等式(-1)nλ(4-Sn)≤1对任意的n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一个坛子中装有16个除颜色外完全相同的玻璃球,其中有2个红的,3个蓝的,5个绿的,6个黄的,从中任取一球,放回后,再取一球.求第一次取出红球且第二次取出黄球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,设角A,B,C的对边分别为a,b,c,且$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$.
(1)求sinB的值;
(2)若b=4$\sqrt{2}$,且a=c,求边AC上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某市甲、乙、丙3个区的高中学生人数之比为2:3:5,现要用分层抽样方法从该市甲、乙、丙3个区所有高中学生中抽取一个样本,已知从甲区中抽取了80人,则应从乙、丙2个区中共抽取(  )
A.120人B.200人C.320人D.400人

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$的对称中心为(-2,3).

查看答案和解析>>

同步练习册答案