精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$的对称中心为(-2,3).

分析 化简函数的解析式,根据函数的解析式可得它的图象的对称性.

解答 解:函数f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$=1-$\frac{1}{x+1}$+1-$\frac{1}{x+2}$+1-$\frac{1}{x+3}$=3-($\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$),
它的定义域为{x|x≠-1,x≠-2,x≠-3},$\frac{-1+(-3)}{2}$=-2.
又 f(-4-x)=3+($\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$),∴f(x)+f(-4-x)=6,
故f(x)的图象的对称中心为(-2,3),
故答案为:(-2,3).

点评 本题主要考查函数的图象的对称性,考查转化思想以及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在平行四边形中,AC与BD交于点O,$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DO}$,CE的延长线与AD交于点F,若$\overrightarrow{CF}$=$λ\overrightarrow{AC}$+$μ\overrightarrow{BD}$(λ,μ∈R),则λ+μ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项公式an=3n-1,前n项和为Sn
(1)求Sn,(2)求a8+a11+a14+…+a3n+11的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1,F2,离心率为$\frac{\sqrt{2}}{2}$,A,B是椭圆上不同的两点且△F1AF2的周长为2($\sqrt{2}$+1)
(1)求椭圆的标准方程;
(2)若A,B关于直线y=mx+$\frac{1}{2}$对称,求△AOB面积取最大值时m的值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{x-4y+1≤0}\end{array}\right.$所表示的平面区域为M,不等式组$\left\{\begin{array}{l}{2x-3y-3≥0}\\{2x+2y-3≤0}\end{array}\right.$所表示的平面区域为N,若M中存在点在圆C:(x-3)2+(y-1)2=r2(r>0)内,但N中不存在点在圆C内.则r的取值范围是(  )
A.(0,$\frac{\sqrt{13}}{2}$]B.($\frac{\sqrt{13}}{2}$,$\sqrt{17}$)C.(0,$\sqrt{17}$)D.(0,$\frac{5\sqrt{2}}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某地政府为提升城市形象,在该地区边长为1的正方形ABCD的空地建文化广场,在正方形ABCD的内部规划一块△CPQ区域种植花草,并满足P,Q分别为边AB,DA上的动点,且∠PCQ=$\frac{π}{3}$,问∠PCB多大时才能使△CPQ面积的最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,如果a1+a2=40,a3+a4=60,那么a5+a6等于(  )
A.80B.90C.95D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(2,1),向量$\overrightarrow{b}$=(3,-4),若向量$λ\overrightarrow{a}$-$\overrightarrow{b}$与向量$\overrightarrow{a}+2\overrightarrow{b}$是共线向量,则实数λ的取值为(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过圆x2+y2+2y=0的圆心且与直线x+2y-2=0平行的直线方程是(  )
A.x+2y-1=0B.x+2y+2=0C.x+2y+1=0D.x+2y+3=0

查看答案和解析>>

同步练习册答案