精英家教网 > 高中数学 > 题目详情
9.设a∈R,函数f(x)=alnx-x.
(I)若f(x)无零点,求实数a的取值范围;
(II)若f(x)有两个相异零点x1,x2,求证:x1x2>e2

分析 (Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调性,确定a的范围即可;
(Ⅱ)问题转化为证明lnx1-lnx2>$\frac{2({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$,即ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$,又令t=$\frac{{x}_{1}}{{x}_{2}}$,则t>1,故只要证明lnt>$\frac{2(t-1)}{t+1}$,根据函数的单调性证明即可.

解答 解:(I)∵f(x)=alnx-x,
∴f(x)定义域是(0,+∞)                     
又f′(x)=$\frac{a}{x}$-1=$\frac{a-x}{x}$------(1分)
(1)当a=0时,无零点------(2分)
(2)当a<0时,f′(x)<0,故f(x)在(0,+∞)上为减函数,
又f(1)=-1当x→0时,f(x)→+∞,所以f(x)有唯一的零点;------(3分)
(3)当a>0时,
∴f(x)在(0,a)递增,在(a,+∞)递减,
∴f(a)=alna-a<0,则只要lna-1<0,即lna<1,
∴a<e而a>0,∴0<a<e------(4分)
综上所述:所求a的范围是[0,e)------(5分)
(II)证明:f(x)有两个相异的零点,又由于x>0,故不妨令x1>x2>0,
且有alnx1=x1,alnx2=x2,a(lnx1+lnx2)=x1+x2
a(lnx1-lnx2)=x1-x2
lnx1+lnx2=$\frac{1}{a}$(x1+x2),lnx1-lnx2=$\frac{1}{a}$(x1-x2),------(6分)
要证x1x2>e2?lnx1x2>2?lnx1+lnx2>2
?$\frac{1}{a}$>$\frac{2}{{x}_{1}+{x}_{2}}$?$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{2}{{x}_{1}+{x}_{2}}$
?lnx1-lnx2>$\frac{2({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$?ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$------(8分)
又令t=$\frac{{x}_{1}}{{x}_{2}}$,则t>1,
故只要证明lnt>$\frac{2(t-1)}{t+1}$,t>1时恒成立,------(9分)
即lnt-$\frac{2(t-1)}{t+1}$>0在(1,+∞)恒成立,
令h(t)=lnt-$\frac{2(t-1)}{t+1}$,则h′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
故h(t)在(0,+∞)递增,h(t)>h(1)=0,
故lnt>$\frac{2(t-1)}{t+1}$在t>1时恒成立,
从而证明x1x2>e2.------(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,考查分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某次数学竞赛后,小军、小民和小乐分列前三名.老师猜测:“小军第一名,小民不是第一名,小乐不是第三名”.结果老师只猜对一个,由此推断:前三名依次为小民、小乐、小军.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在区间上[0,π]上任取一个数x,求使得cosx>$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x∈Z|x2-16<0},B={x|x2-4x+3>0},则A∩B=(  )
A.{x|-4<x<1或3<x<4}B.{-4,-3,-2,-1,0,3,4}
C.{x|x<1或3<x<4}D.{-3,-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和为Sn,且an+Sn=1,n∈N*,则a1=$\frac{1}{2}$;an=$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点F(1,0),直线l:x=-1,直线l′垂直l于点P,线段PF的垂直平分线交直线l′于点Q.
(Ⅰ)求点Q的轨迹C的方程;
(Ⅱ)已知轨迹C上的不同两点M,N与P(1,2)的连线的斜率之和为2,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q(q≠1),且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$.
(1)求an与bn
(2)证明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知B=2C,c=2,a=1.
(1)求边长b的值;
(2)求sin(2B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数 f (x)=($\sqrt{3}$cosωx+sinωx)•cosωx-$\frac{{\sqrt{3}}}{2}$,其中ω>0,且f(x)的最小正周期为π.
(Ⅰ) 求ω 的值及函数f(x)的单调递减区间;
(Ⅱ) 在锐角△ABC中,角A,B,C的对边分别为a,b,c,若角B满足 f ($\frac{B}{2}-\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,且b=3,sinA+sinC=$\frac{{2\sqrt{3}}}{3}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案