精英家教网 > 高中数学 > 题目详情
8.若点P,Q分别是直线3x-4y-15=0和圆x2+y2=4上的两个动点,则|PQ|的最小值是(  )
A.3B.2C.1D.0

分析 先求圆心到直线的距离,再减去半径即可.

解答 解:圆的圆心坐标(0,0),到直线3x-4y-15=0的距离是$\frac{15}{\sqrt{9+16}}$=3,
所以圆x2+y2=4上的点到直线3x-4y-15=0的距离|PQ|的最小值是3-2=1
故选C.

点评 本题考查直线和圆的位置关系,数形结合的思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.
(1)求{an}的通项公式
(2)求证:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点A(-$\sqrt{2}$,0)和圆B:(x-$\sqrt{2}$)2+y2=16,点Q在圆B上,线段AQ的垂直平分线角BQ于点P.
(1)求点P的轨迹C的方程;
(2)轨迹C上是否存在直线2x+y+1=0对称的两点,若存在,设这两个点分别为S,T,求直线ST的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$-$\frac{3}{{x}^{2}}$-1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<$\frac{2x}{e}$-$\frac{{x}^{2}}{{e}^{x}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=3,2a1+3a2+…+nan-1=(n+1)an(n∈N*,n≥2)
(Ⅰ)计算a2,a3的值,并求数列{an}的通项an
(Ⅱ)若存在n∈N*,且n≥2,使得$\frac{{a}_{n}}{{2}^{n}•λ}$≥$\frac{3n}{n-1}$成立,求正实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线3x+4y-25=0与圆x2+y2=4相离,求圆上一点到直线的最大距离和最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln$\frac{1}{x}$+ax-1(a≠0).
(I)求函数f(x)的单调区间;
(Ⅱ)已知g(x)+xf(x)=-x,若函数g(x)有两个极值点x1,x2(x1<x2),求证:g(x1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式|2x-1|-|x+2|>0的解集为$(-∞,-\frac{1}{3})∪(3,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正死棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)当正四棱锥P-ABCD的高为1时,求二面角C-AF-P的余弦值.

查看答案和解析>>

同步练习册答案