分析 (1)根据数列和函数的特征,以及数列的递推公式即可求出数列{an+1}是以2为首项,以2为公比的等比数列,即可得到数列的通项公式和,
(2)利用放缩法以及等比数列的求和公式即可证明.
解答 解:(1)∵点(an,an+1)在函数y=2x+1的图象上,
∴an+1=2an+1,
∴an+1+1=2(an+1)
∴$\frac{{a}_{n+1}+1}{{a}_{n}+1}$=2,
∵a1=1,
∴a1+1=2,
∴数列{an+1}是以2为首项,以2为公比的等比数列,
∴an+1=2n,
∴an=2n-1;
(2)证明:由(1)知an=2n-1;
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}-1}$<$\frac{1}{2}$•$\frac{1}{{2}^{n-1}-1}$=$\frac{1}{2{a}_{n-1}}$,
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n}}$=$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{7}$+$\frac{1}{14}$+…+$\frac{1}{7•{2}^{n-3}}$
=1+$\frac{1}{3}$+$\frac{2}{7}$[1-($\frac{1}{2}$)n-2]<1+$\frac{1}{3}$+$\frac{2}{7}$=$\frac{34}{21}$<$\frac{35}{21}$=$\frac{5}{3}$.
点评 本题考查实数值和数列的通项公式的求法,考查不等式的证明,解题时要熟练掌握等比数列的性质,注意放缩法在证明题中的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com