精英家教网 > 高中数学 > 题目详情
4.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集.
(2)若a>0,且0<x<m<n<$\frac{1}{a}$,比较f(x)与m的大小.

分析 根据函数F(x)=f(x)-x的两个零点为m,n,因此该函数解析式可表示为F(x)=a(x-m)(x-n),
(1)m=-1,n=2时,对a>0,或a<0.进行讨论,写出不等式的解集即可;
(2)要比较f(x)与m的大小,做差,即有f(x)-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),根据a>0且0<x<m<n<$\frac{1}{a}$,分析各因式的符号,即可得到结论.

解答 解:(1)由题意知,F(x)=f(x)-x=a(x-m)(x-n)
当m=-1,n=2时,不等式F(x)>0
即为a(x+1)(x-2)>0.
当a>0时,不等式F(x)>0的解集为{x|x<-1,或x>2};
当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.
(2)f(x)-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1)
∵a>0,且0<x<m<n<$\frac{1}{a}$,即0<ax<am<an<1;
∴x-m<0,an<1,
∴1-an+ax>0
∴f(x)-m<0,
即f(x)<m.

点评 此题是中档题.考查二次函数的两根式,以及不等式比较大小等基础知识和方法,考查学生灵活应用知识分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=ax2+bx+c.
(1)若不等式f(x)>0的解集为{x|-2<x<3},求不等式cx2+bx+a>0的解集.
(2)若不等式f(x)≥0在实数集上恒成立,且a<b,求T=$\frac{a+b+c}{b-a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=x2+6x+5和x轴、y轴的交点连接成三角形的面积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x1,x2是方程x2+4[kx+(1-2k)]2=4的两根,求(x1-x22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若f(x)=(m-1)x2+mx+3(x∈R)是偶函数,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与定积分${∫}_{0}^{3π}$$\sqrt{1-cosx}$dx相等的是(  )
A.$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dxB.$\sqrt{2}$${∫}_{0}^{3π}$|sin$\frac{x}{2}$|dxC.|$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dx|D.以上结论都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A到B的函数为f1:x→y=2x+1,B到C的函数为f2:y→z=y2-1,则A到C的函数f是(  )
A.f:x→z=4x(x+1)B.f:x→z=2x2-1C.f:x→z=2-x2D.f:x→z=4x2+4x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知集合A={k|方程x2+(2k-1)x+k2=0至少有一个不大于1的实根},求集合B={k|k∈A且k∈Z}的所有子集;
(2)设集合P={x|$\frac{5{x}^{2}+10x+2}{3{x}^{2}+13x+4}$≥1},Q={x|x2-2x-a4+1≥0},且P⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinα=-$\frac{1}{3}$,且α是第三象限的角.求cosα,tanα.

查看答案和解析>>

同步练习册答案