精英家教网 > 高中数学 > 题目详情

已知数列的各项都是正数,且对任意都有,其中为数列的前项和.
(1)求
(2)求数列的通项公式;
(3)设,对任意的,都有恒成立,求实数的取值范围.

(1);(2);(3).

解析试题分析:(1)分别令代入题干中的等式求出的值;(2)利用定义法进行求解,在原式中利用替换得到,将此等式与原式作差得到
,再次利用定义法得到数列为等差数列,最后利用等差数列的通项公式进行求解;(3)利用化简得到,对进行分奇偶讨论求出的取值范围.
试题解析:(1)令,则,即,所以
又因为数列的各项都是正数,所以
,则,即,解得
又因为数列的各项都是正数,所以
(2),          ①
, ②
由①②得
化简得到, ③
,④
由③④得
化简得到,即
时,,所以
所以数列是一个以为首项,为公差的等差数列,

(3)
因为对任意的,都有恒成立,即有
化简得
为奇数时,恒成立,,即
为偶数时,恒成立,,即
,故实数的取值范围是.
考点:1.定义法求数列的通项公式;2.数列不等式恒成立;3.分类讨论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的是较小的两份之和,则最小1份的大小是       

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和和通项满足是大于0的常数,且),数列是公比不为的等比数列,.
(1)求数列的通项公式;
(2)设,是否存在实数,使数列是等比数列?若存在,求出所有可能的实数的值,若不存在说明理由;
(3)数列是否能为等比数列?若能,请给出一个符合的条件的的组合,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设项数均为)的数列项的和分别为.已知集合=.
(1)已知,求数列的通项公式;
(2)若,试研究时是否存在符合条件的数列对(),并说明理由;
(3)若,对于固定的,求证:符合条件的数列对()有偶数对.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.
(1) 若成等比数列,求的值;
(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分,计入总分)
已知数列满足:
⑴求;   
⑵当时,求的关系式,并求数列中偶数项的通项公式;
⑶求数列前100项中所有奇数项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

己知等差数列的首项为,公差为,其前项和为,若直线与圆的两个交点关于直线对称,则(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知等差数列的公差,且成等比数列,则的值是(    )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

数列的前项和则它的通项公式是__________

查看答案和解析>>

同步练习册答案