分析 (1)由椭圆方程为 $\frac{x^2}{4}+\frac{y^2}{3}$=1,利用平方关系可得参数方程.
(2)设M(x,y),M是PQ的中点,则P(2x-4,2y).代入椭圆方程可得:(x-2)2+$\frac{4{y}^{2}}{3}$=1.利用平方关系即可得出.
解答 解:(1)由椭圆方程为 $\frac{x^2}{4}+\frac{y^2}{3}$=1,令$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(2)设M(x,y),M是PQ的中点,则P(2x-4,2y).
代入椭圆方程可得:$\frac{(2x-4)^{2}}{4}$+$\frac{4{y}^{2}}{3}$=1,化为(x-2)2+$\frac{4{y}^{2}}{3}$=1.
令x-2=cosα,$\frac{2y}{\sqrt{3}}$=sinα,可得$\left\{\begin{array}{l}{x=2+cosα}\\{y=\frac{\sqrt{3}}{2}sinα}\end{array}\right.$(α为参数).
点评 本题考查了椭圆的标准方程与参数方程、三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>1 | B. | 1<m<8 | C. | m>8 | D. | 0<m<1或 m>8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com