分析 利用向量的数量积公式,结合双曲线的方程,即可求出x0的取值范围.
解答 解:由题意,∵∠F1MF2为钝角,
∴$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$=(-$\sqrt{3}$-x0,-y0)•($\sqrt{3}$-x0,-y0)=x02-3+y02=$\frac{3}{2}$x02-4<0,且$\frac{3}{2}$x02-4≠-1
∴-$\frac{2\sqrt{6}}{3}$<x0<$\frac{2\sqrt{6}}{3}$且x0≠$±\sqrt{2}$.
故答案为-$\frac{2\sqrt{6}}{3}$<x0<$\frac{2\sqrt{6}}{3}$且x0≠$±\sqrt{2}$.
点评 本题考查向量的数量积公式、双曲线的方程,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,1] | B. | (-2,1) | C. | (-2,1] | D. | {-2,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com