精英家教网 > 高中数学 > 题目详情
16.若正数a,b满足ab=a+b+3.
(1)求ab的取值范围.
(2)求a+b的取值范围.

分析 (1)正数a,b满足ab=a+b+3,可得ab=a+b+3≥$2\sqrt{ab}$+3,解出即可得出.
(2)正数a,b满足ab=a+b+3,可得a+b+3=ab≤$(\frac{a+b}{2})^{2}$,解出即可得出.

解答 解:(1)∵正数a,b满足ab=a+b+3,
∴ab=a+b+3≥$2\sqrt{ab}$+3,即$(\sqrt{ab})^{2}$-2$\sqrt{ab}$-3≥0,
解得$\sqrt{ab}$≥3,即ab≥9,当且仅当a=b=3时取等号,∴ab∈[9,+∞).
(2)∵正数a,b满足ab=a+b+3,∴a+b+3=ab≤$(\frac{a+b}{2})^{2}$,
即(a+b)2-4(a+b)-12≥0,解得a+b≥6,当且仅当a=b=3时取等号,
∴a+b∈[6,+∞).

点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某部队为了在大阅兵中树立军队的良好形象,决定从参训的12名男兵和18名女兵中挑选出正式阅兵人员,这30名军人的身高如图:单位:cm
若身高在175cm(含175cm)以上,定义为“高个子”,身高在175cm以下,定义为“非高个子”,且只有“女高个子”才能担任“护旗手”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中选定5名军人,分别抽“高个子”和“非高个子”各多少人?
(2)如果用分层抽样的方法从“高个子”和“非高个子”中共选定了5名军人,再从这5人中任选2人,那么至少有1人是“高个子”的概率是多少?
(3)如果从选定的3名“男高个子”和2名“女高个子”中任选2名军人,求所选这2名军人中恰有1人能担任“护旗手”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.口袋中放有大小相等的2个红球和1个白球,有放回地每次摸取1个球,定义数列{an}:若第n次摸到红球,an=-1;若第n次摸到白球,an=1.如果Sn为数列{an}的前n项和,那么S7=3的概率为(  )
A.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$B.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{1}{3}})^5}$C.$C_7^3×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$D.$C_7^2×{({\frac{2}{3}})^2}×{({\frac{1}{3}})^5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定义域为(0,2],则函数y=f(x+1)的定义域为(-1,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),试求:
(1)边AC所在直线的方程; 
(2)BC边上的中线AD所在直线的方程;
(3)BC边上的高AE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知M(x0,y0)是双曲线C:$\frac{x^2}{2}$-y2=1上的一点,F1,F2是C上的两个焦点,若∠F1MF2为钝角,则x0的取值范围是-$\frac{2\sqrt{6}}{3}$<x0<$\frac{2\sqrt{6}}{3}$且x0≠$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x(ex-e-x),若f(a+3)>f(2a),则a的范围是-1<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是(  )
A.π+1B.π+2C.2π+1D.$3π+5+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x2-ax在(-∞,2]上递减,在(2,+∞)上递增,则a=4.

查看答案和解析>>

同步练习册答案