精英家教网 > 高中数学 > 题目详情
已知
a
b
为平面向量,且|
a
|=
3
,|
b
|=2,
a
b
的夹角为30°.
(Ⅰ)求|
a
+
b
|及|
a
-
b
|;
(Ⅱ)若向量
a
+
b
a
b
垂直,求实数λ的值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(I)利用数量积定义和运算性质即可得出;
(II)由向量
a
+
b
a
b
垂直,可得(
a
+
b
)•(
a
b
)=
a
2
b
2
+(1-λ)
a
b
=0,代入解出即可.
解答: 解:(I)∵|
a
|=
3
,|
b
|=2,
a
b
的夹角为30°,
a
b
=|
a
| |
b
|cos30°
=
3
×2×
3
2
=3,
∴|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
3+4+2×3
=
13

|
a
-
b
|=
a
2
+
b
2
-2
a
b
=
3+4-2×3
=1.
(II)∵向量
a
+
b
a
b
垂直,
∴(
a
+
b
)•(
a
b
)=
a
2
b
2
+(1-λ)
a
b
=0,
∴3-4λ+3(1-λ)=0,解得λ=
6
7
点评:本题考查了数量积定义和运算性质、向量垂直于数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,满足f(x)+f(-x)=0,f(x-1)=f(x+1),当x∈[0,1),f(x)=
2x
4x+1
,函数f(x)的最小值为(  )
A、-
11
12
B、-
1
4
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,M为PD的中点.求证:PB∥平面ACM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1是长方体,AB=AD=a,AA1=2a.
(1)求多面体A1B1C1D1-BCD的体积;
(2)求证:平面A1BD⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:一元二次方程x2+2ax+1=0有实数解;q:对数函数y=logax(a>0,a≠1)在定义域上是减函数,若“p或q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足条件:顶点在原点,关于x轴对称,并且经过点M(2,-4)的抛物线的标准方程,并求出此抛物线的准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f[g(x)]=sin2x,g(x)=sin(x+
π
4
),则f(
1
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
C
2
9
+
C
3
9
=
 
.(用数字作答)

查看答案和解析>>

同步练习册答案