精英家教网 > 高中数学 > 题目详情

三棱锥S—ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:

①异面直线SB与AC所成的角为90°.

②直线SB⊥平面ABC;

③平面SBC⊥平面SAC;

④点C到平面SAB的距离是a.

其中正确结论的序号是________.

 

①②③④

【解析】由题意知AC⊥平面SBC,故AC⊥SB,SB⊥平面ABC,平面SBC⊥平面SAC,①②③正确;取AB的中点E,连接CE,可证得CE⊥平面SAB,故CE的长度即为C到平面SAB的距离a,④正确.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学人教版评估检测 第三章 三角函数、解三角形(解析版) 题型:选择题

给出下列命题:

①第二象限角大于第一象限角;

②三角形的内角是第一象限角或第二象限角;

③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;

④若sinα=sinβ,则α与β的终边相同;

⑤若cosθ<0,则θ是第二或第三象限的角.

其中正确命题的个数是(  )

A.1     B.2     C.3     D.4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 集合、常用逻辑用语、不等式、函数与导数(解析版) 题型:选择题

设a=log0.32,b=log0.33,c=20.3,d=0.32,则这四个数的大小关系是( )

A.a<b<c<d B.b<a<d<c

C.b<a<c<d D.d<c<a<b

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 解析几何(解析版) 题型:选择题

设抛物线C:y2=2px(p≥0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )

A.y2=4x或y2=8x B.y2=2x或y2=8x

C.y2=4x或y2=16x D.y2=2x或y2=16x

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:解答题

如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.

(2)求证:平面PAC⊥平面PCB.

(3)设二面角M—BP—C的大小为θ,求cos θ的值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:选择题

已知正四棱锥S—ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为(  )

A.1   B.   C.2   D.3

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:选择题

在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的(  )

A.BC∥平面PDF

B.DF⊥平面PAE

C.平面PDE⊥平面ABC

D.平面PAE⊥平面ABC

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:选择题

如图所示的是甲、乙两人在5次综合测评中成绩的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 三角函数、解三角形与平面向量(解析版) 题型:选择题

命题“对任意x∈R,都有x2≥0”的否定为(  )

A.对任意x∈R,都有x2<0

B.不存在x∈R,使得x2<0

C.存在x0∈R,使得x02≥0

D.存在x0∈R,使得x02<0

 

查看答案和解析>>

同步练习册答案