精英家教网 > 高中数学 > 题目详情

已知正四棱锥S—ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为(  )

A.1   B.   C.2   D.3

 

C

【解析】如图所示,设正四棱锥高为h,底面边长为a,则a=,即a2=2(12-h2),

所以V=×a2×h=h(12-h2)=-(h3-12h),

令f(h)=h3-12h,则f′(h)=3h2-12(h>0),

令f′(h)=0,则h=2,此时f(h)有最小值,V有最大值.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学人教版评估检测 第七章 立体几何(解析版) 题型:解答题

(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求证:AC⊥BD.

(2)求三棱锥E-BCD的体积.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 解析几何(解析版) 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.

(1)证明:A1C⊥平面BB1D1D;

(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 解析几何(解析版) 题型:选择题

若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点(  )

A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:填空题

三棱锥S—ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:

①异面直线SB与AC所成的角为90°.

②直线SB⊥平面ABC;

③平面SBC⊥平面SAC;

④点C到平面SAB的距离是a.

其中正确结论的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:选择题

设z=x+y,其中实数x,y满足,若z的最大值为6,则z的最小值为(  )

A.-3 B.-2 C.-1 D.0

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:解答题

如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;

(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:选择题

已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=( )

A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}

 

查看答案和解析>>

科目:高中数学 来源:2014年吉林省延边州高考复习质量检测理科数学试卷(解析版) 题型:解答题

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为为参数),点Q的极坐标为

(1)化圆C的参数方程为极坐标方程;

(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。

 

查看答案和解析>>

同步练习册答案