精英家教网 > 高中数学 > 题目详情

若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点(  )

A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)

 

A

【解析】依题意,k+b=-2,∴b=-2-k,

∴y=kx+b=k(x-1)-2,

∴直线y=k(x-1)-2必过定点(1,-2).

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学人教版评估检测 第三章 三角函数、解三角形(解析版) 题型:选择题

(2014·天门模拟)若函数f(x)=sinωx+cosωx,x∈R,又f(α)=-2,f(β)=0,且|α-β|的最小值为,则正数ω的值为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 集合、常用逻辑用语、不等式、函数与导数(解析版) 题型:选择题

设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )

A.函数f(x)有极大值f(2)和极小值f(1)

B.函数f(x)有极大值f(-2)和极小值f(1)

C.函数f(x)有极大值f(2)和极小值f(-2)

D.函数f(x)有极大值f(-2)和极小值f(2)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 解析几何(解析版) 题型:填空题

双曲线-y2=1的顶点到其渐近线的距离等于________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 解析几何(解析版) 题型:选择题

设抛物线C:y2=2px(p≥0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )

A.y2=4x或y2=8x B.y2=2x或y2=8x

C.y2=4x或y2=16x D.y2=2x或y2=16x

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;

(2)求多面体ABCDE的体积.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:选择题

已知正四棱锥S—ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为(  )

A.1   B.   C.2   D.3

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:填空题

二项式(x+y)5的展开式中,含x2y3的项的系数是________.(用数字作答)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 三角函数、解三角形与平面向量(解析版) 题型:填空题

设f(x)=sin 3x+cos 3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.

 

查看答案和解析>>

同步练习册答案