精英家教网 > 高中数学 > 题目详情
12.已知点P(-3,5),Q(2,1),向量$\overrightarrow{m}$=(2λ-1,λ+1),若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则实数λ等于(  )
A.$\frac{1}{13}$B.$-\frac{1}{13}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 根据题意,由P、Q的坐标计算可得向量$\overrightarrow{PQ}$的坐标,进而由向量平行的坐标表示方法可得5(λ+1)=(-4)×(2λ-1),解可得λ的值,即可得答案.

解答 根据题意,点P(-3,5),Q(2,1),则$\overrightarrow{PQ}$=(5,-4),
若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则有5(λ+1)=(-4)×(2λ-1),
解可得λ=-$\frac{1}{13}$;
故选:B.

点评 本题考查向量平行的坐标表示方法,关键是列出方程并准确计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.等差数列的前4项之和为30,前8项之和为100,则它的前12项之和为(  )
A.130B.170C.210D.260

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个袋中有大小相同,编号分别为1,2,3,4,5的五个球,从中有放回地每次取一个球,共取3次,取得三个球的编号之和不小于13的概率为(  )
A.$\frac{4}{125}$B.$\frac{7}{125}$C.$\frac{2}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|x2+3x-10≤0},则集合A中元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(x2-3x+3)•ex
(1)试确定t的取值范围,使得函数f(x)在[-2,t](t>-2)上为单调函数;
(2)若t为自然数,则当t取哪些值时,方程f(x)-z=0(x∈R)在[-2,t]上有三个不相等的实数根,并求出相应的实数z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线x2=4y的焦点是F,直线$x-\sqrt{3}y+\sqrt{3}=0$交抛物线于A,B两点,且|AF|>|BF|,则$\frac{{|{AF}|}}{{|{BF}|}}$=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m.”为真命题
D.若命题P:?n∈N,2n>1000,则¬P:?n∈N,2n>1000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等腰Rt△ABC中,∠BAC=90°,腰长为2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B-ADEC,且F为棱BC中点,BA=$\sqrt{2}$.
(1)求证:EF⊥平面BAC;
(2)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案