精英家教网 > 高中数学 > 题目详情
11.指数函数y=ax(a>0,a≠1)在区间[-1,1]上的最大值与最小值之差等于$\frac{3}{2}$,则常数a的值是(  )
A.2B.$\frac{1}{4}$C.2或$\frac{1}{2}$D.2或$\frac{1}{4}$

分析 对底数a分类讨论,分别根据指数函数的单调性求出函数的最大、小值,由条件列出方程求出a的值.

解答 解:①当a>1时,y=ax在区间[-1,1]上的最大值是a,最小值是$\frac{1}{a}$,
∴a-$\frac{1}{a}$=$\frac{3}{2}$,则2a2-3a-2=0,解得a=2或$-\frac{1}{2}$(舍去),
则a=2;
②当a>1时,y=ax在区间[-1,1]上的最小值是a,最大值是$\frac{1}{a}$,
∴$\frac{1}{a}$-a=$\frac{3}{2}$,则2a2+3a-2=0,解得a=$\frac{1}{2}$或-2(舍去),
则a=$\frac{1}{2}$,
综上可得,a的值是$\frac{1}{2}$或2,
故选:C.

点评 本题考查指数函数的单调性,以及分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x$\sqrt{1-x}$,g(x)=$\sqrt{1-x}$,则f(x)•g(x)的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数的对称中心为M(x0,y0),记函数f(x)的导函数为f′(x),函数f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则可求得:f($\frac{1}{2012}$)+f($\frac{2}{2012}$)+…+f($\frac{4022}{2012}$)+f($\frac{4023}{2012}$)=-8046.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)关于x的不等式(m+3)x2-(m+3)x-1<0的解集为R,求实数m的取值范围;
(Ⅱ) 关于x的不等式x2+ax+4>0的解集为{x|x≠b},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α∈($\frac{π}{2}$,π),sinα+cosα=$\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a+2b+3c=1,a>0,b>0,c>0,求c2+ac+bc+ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+63}{n+3}$,则使得$\frac{{a}_{n}}{{b}_{n}}$为整数的个数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙两位同学在高一的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均分分别是x、x,则下列叙述正确的是(  )
A.x>x,乙比甲成绩稳定B.x>x,甲比乙成绩稳定
C.x<x,乙比甲成绩稳定D.x<x,甲比乙成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2cos2x+2sinxcosx,求:
(I)f(x)的最小正周期;
(Ⅱ)f(x)的最大值与最小值,以及相应的x.

查看答案和解析>>

同步练习册答案