分析 设扇形的圆心角为θ,半径为r.可得:2r+θr=l.解得θ=$\frac{l-2r}{r}$>0.可得S=$\frac{1}{2}θ{r}^{2}$=$\frac{1}{4}$(l-2r)2r,再利用基本不等式的性质即可得出.
解答 解:设扇形的圆心角为θ,半径为r.
则2r+θr=l.
∴θ=$\frac{l-2r}{r}$>0.
∴S=$\frac{1}{2}θ{r}^{2}$=$\frac{1}{2}×\frac{l-2r}{r}$×r2=$\frac{1}{4}$(l-2r)2r≤$\frac{1}{4}(\frac{l-2r+2r}{2})^{2}$=$\frac{{l}^{2}}{16}$,当且仅当r=$\frac{l}{4}$时取等号.
故答案为:$\frac{{l}^{2}}{16}$.
点评 本题考查了扇形面积计算公式、弧长公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com