分析 由抛物线y2=8x,可得焦点F(2,0),直线l的方程为:y=x-2,A(x1,y1),B(x2,y2),直线方程与抛物线方程联立,利用一元二次方程的根与系数的关系、抛物线的定义即可得出.
解答 解:由抛物线y2=8x,可得焦点F(2,0),
直线l的方程为:y=x-2,A(x1,y1),B(x2,y2)
联立$\left\{\begin{array}{l}{y=x-2}\\{{y}^{2}=8x}\end{array}\right.$,化为:x2-12x+4=0,
∴x1+x2=12,x1x2=4.
∴|$\overrightarrow{FA}$|•|$\overrightarrow{FB}$|=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=4+2×12+4=32.
故答案为:32.
点评 本题考查了抛物线的定义标准方程及其性质、直线与抛物线相交弦长问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1或2 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值有无数个最优解,最大值只有一个最优解 | |
| B. | 最大值、最小值都有无数个最优解 | |
| C. | 最大值有无数个最优解,最小值只有一个最优解 | |
| D. | 最大值、最小值都只有一个最优解 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com