分析 由:($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2012 =$[(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{3}]^{670}(\frac{1}{2}+\frac{\sqrt{3}}{2})^{2}$,分别求出$(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{3}$和$(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$后得答案.
解答 解:∵($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2012 =$[(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{3}]^{670}(\frac{1}{2}+\frac{\sqrt{3}}{2})^{2}$=$(-1)^{670}(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$=$-\frac{1}{2}+\frac{\sqrt{3}}{2}i$.
∴复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2012的共轭复数是-$\frac{1}{2}-\frac{\sqrt{3}}{2}i$.
故答案为:-$\frac{1}{2}-\frac{\sqrt{3}}{2}i$.
点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com