| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 由已知及正弦定理可解得:sinC=$\frac{2\sqrt{3}}{BC}$,AC=2BCsinB,由cosC>0,利用同角三角函数基本关系式可得cosC=$\sqrt{\frac{B{C}^{2}-12}{B{C}^{2}}}$>0,从而利用两角差的正弦函数公式化简可得AC=2BC•sin(150°-C)=$\sqrt{B{C}^{2}-12}+6$>6,从而得解.
解答 解:∵∠A=30°,AB=4$\sqrt{3}$,
∴由正弦定理可得:$\frac{4\sqrt{3}}{sinC}$=$\frac{BC}{sin30°}$=$\frac{AC}{sinB}$,解得:sinC=$\frac{2\sqrt{3}}{BC}$,AC=2BCsinB,
∵△ABC为锐角三角形,cosC>0
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\sqrt{\frac{B{C}^{2}-12}{B{C}^{2}}}$>0,可得:BC2-12>0,
∴AC=2BCsinB
=2BC•sin(150°-C)
=2BC•($\frac{1}{2}$cosC+$\frac{\sqrt{3}}{2}$sinC)
=2BC•($\frac{1}{2}×$$\sqrt{\frac{B{C}^{2}-12}{B{C}^{2}}}$+$\frac{\sqrt{3}}{2}$×$\frac{2\sqrt{3}}{BC}$)
=$\sqrt{B{C}^{2}-12}+6$>6.
故选:D.
点评 本题主要考查了正弦定理,两角差的正弦函数公式,三角形内角和定理,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com