精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点与抛物线C2:y2=4x的焦点F重合,椭圆C1与抛物线C2在第一象限的交点为P,|PF|=
5
3

(1)求椭圆C1的方程;
(2)过点A(-1,0)的直线与椭圆C1相交于M、N两点,求使
FM
+
FN
=
FR
成立的动点R的轨迹方程.
分析:(1)抛物线y2=4x的焦点F的坐标为(1,0),准线为x=-1,设点P的坐标为(x0,y0),依据抛物线的定义,由|PF|=
5
3
,可求x0.由点P在抛物线C2上,且在第一象限可求点P的坐标,再由点P在椭圆C1
x2
a2
+
y2
b2
=1
上及c=1,a2=b2+c2=b2+1,可求a,b,从而可求椭圆的方程
(2)设点M(x1,y1)、N(x2,y2)、R(x,y),则由
FM
+
FN
=
FR
,可得x1+x2-2=x-1,y1+y2=y.利用设而不求的方法可得
y1-y2
x1-x2
=-
3(x+1)
4y
,设FR的中点为Q,则Q的坐标为(
x+1
2
y
2
)
.由M、N、Q、A四点共线可得
y1-y2
x1-x2
=
y
2
x+1
2
+1
=
y
x+3
整理可得
解答:(1)解:抛物线C2:y2=4x的焦点F的坐标为(1,0),准线为x=-1,
设点P的坐标为(x0,y0),依据抛物线的定义,由|PF|=
5
3
,得1+x0=
5
3
,解得x0=
2
3

∵点P在抛物线C2上,且在第一象限,∴
y
2
0
=4x0=4×
2
3
,解得y0=
2
6
3

∴点P的坐标为(
2
3
2
6
3
)

∵点P在椭圆C1
x2
a2
+
y2
b2
=1
上,∴
4
9a2
+
8
3b2
=1

又c=1,且a2=b2+c2=b2+1,解得a2=4,b2=3.
∴椭圆C1的方程为
x2
4
+
y2
3
=1

(2)解:设点M(x1,y1)、N(x2,y2)、R(x,y),
FM
=(x1-1,y1),
FN
=(x2-1,y2),
FR
=(x-1,y)

FM
+
FN
=(x1+x2-2,y1+y2)

FM
+
FN
=
FR

∴x1+x2-2=x-1,y1+y2=y.①
∵M、N在椭圆C1上,∴
x
2
1
4
+
y
2
1
3
=1,
x
2
2
4
+
y
2
2
3
=1

上面两式相减得
(x1+x2)(x1-x2)
4
+
(y1+y2)(y1-y2)
3
=0
.②
把①式代入②式得
(x+1)(x1-x2)
4
+
y(y1-y2)
3
=0

当x1≠x2时,得
y1-y2
x1-x2
=-
3(x+1)
4y
.③
设FR的中点为Q,则Q的坐标为(
x+1
2
y
2
)

∵M、N、Q、A四点共线,∴kMN=kAQ,即
y1-y2
x1-x2
=
y
2
x+1
2
+1
=
y
x+3
.④
把④式代入③式,得
y
x+3
=-
3(x+1)
4y
,化简得4y2+3(x2+4x+3)=0.
当x1=x2时,可得点R的坐标为(-3,0),
经检验,点R(-3,0)在曲线4y2+3(x2+4x+3)=0上.
∴动点R的轨迹方程为4y2+3(x2+4x+3)=0.
点评:圆锥曲线的性质与圆锥曲线的定义相结合,在解题时要注意灵活应用这样可以简化运算在直线与椭圆的位置关系中涉及到直线的斜率、线段的中点结合在一起的问题,“设而不求”得做法可以简化解题的基本运算,这是解决此类问题的重要方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案