分析 (Ⅰ)设等差数列{an}的公差为d,根据题意、等差数列的性质以及通项公式列出方程,求出公差d,由等差数列的通项公式求出an;
(Ⅱ)由(I)化简bn=(-1)n-1anan+1,利用并项求和法和等差数列的前n项和公式求出数列{bn}的前2n项和T2n.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
由S3+S4=S5可得a1+a2+a3=a5,-------(2分)
即3a2=a5,则3(1+d)=1+4d,解得d=2-----(4分)
所以an=1+(n-1)×2=2n-1.------------(6分)
(Ⅱ)由(Ⅰ)可得:
${b_n}={(-1)^{n-1}}•(2n-1)(2n+1)={(-1)^{n-1}}•(4{n^2}-1)$------(7分)
所以${T_{2n}}=(4×{1^2}-1)-(4×{2^2}-1)+(4×{3^2}-1)-(4×{4^2}-1)+…+{(-1)^{2n-1}}•[{4×{{(2n)}^2}-1}]$
=4[12-22+32-42+…+(2n-1)2-(2n)2]------------(9分)
=-4(1+2+3+4+…+2n-1+2n)
=$-4×\frac{2n(2n+1)}{2}=-8{n}^{2}-4n$------(12分)
点评 本题考查等差数列的性质、通项公式以及前n项和公式,以及并项求和法求数列的和,考查化简、变形能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com