精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:“你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.”看后甲对大家说:“我还是不知道我的成绩.”根据以上信息,则(

A.乙可以知道两人的成绩B.丁可能知道两人的成绩

C.乙、丁可以知道自己的成绩D.乙、丁可以知道对方的成绩

【答案】C

【解析】

根据四人的成绩,甲看到的成绩和甲所说的话,可以知道乙、丙中有位优秀位良好,甲、丁中有位优秀位良好.进而可以推出结果.

四人中有2位优秀,2位良好.

给甲看乙、丙的成绩,然后甲还是不知道自己的成绩,

所以乙、丙的成绩不同,即乙、丙中有位优秀位良好,

则甲、丁中有位优秀位良好.

于是乙看丙的成绩后,就知道了自己的成绩;

丁看甲的成绩后,就知道了自己的成绩.

所以A,B,D不正确,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

1)写出图(1)表示的市场售价与时间的函数关系式;写出图(2)表示的种植成本与时间的函数关系式

2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不同的直线,表示不同的平面,给出下列个命题:其中命题正确的个数是(

①若,且,则

②若,且,则

③若,则

,且,则.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为:为参数),在以为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线交于两点,点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点..

(1)求证:平面平面

(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直线xx1xx2yf(x)图象的任意两条对称轴,且|x1x2|的最小值为 .

(Ⅰ)求f(x)的表达式;

(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

同步练习册答案