精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆: 的左右焦点分别 ,过作垂直于轴的直线交椭圆于两点,满足.

(1)求椭圆的离心率.

(2)是椭圆短轴的两个端点,设点是椭圆上一点(异于椭圆的顶点),直线分别与轴相交于两点,为坐标原点,若,求椭圆的方程.

【答案】(1);(2)

【解析】

(1)在椭圆的方程中,令可得点A的纵坐标,即然后根据可求得离心率.(2),于是可得直线MP和NP的方程,进而得到点R和点Q的横坐标,然后根据可得,于是,故得,从而得到椭圆的方程.

(1)由题意得,点的横坐标为

又点在椭圆上,

解得

整理得

解得(舍去),

(2)设

则直线MP的方程为

,得,即点R的横坐标为

同理可得直线NP的方程为

得到Q点的横坐标为

∴椭圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1底面是边长为1的正方形,高AA1= ,点A是平面α内的一个定点,AA1与α所成角为 ,点C1在平面α内的射影为P,当四棱柱ABCD﹣A1B1C1D1按要求运动时(允许四棱柱上的点在平面α的同侧或异侧),点P所经过的区域的面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知存在常数,那么函数上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.

(1)判断函数的单调性,并证明:

(2)将前述的函数推广为更为一般形式的函数,使都是的特例,研究的单调性(只须归纳出结论,不必推理证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过两个焦点,A,B是椭圆C的长轴端点.

(1)求椭圆C的标准方程和圆O的方程;
(2)设P、Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x平行,直线AP、BP与y轴的交点即为M、N,试证明∠MQN为直角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,命题p:x∈[-2,-1],x2-a≥0,命题q:

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN= ,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行下面的程序框图,输出的值为3,则判断框中应填入的条件是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是(

A. 给定两个命题,若为真命题,则都是假命题;

B. 命题“若,则”的逆否命题是“若,则”;

C. 若命题,则,使得

D. 函数处的导数存在,若的极值点,则 的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

同步练习册答案