精英家教网 > 高中数学 > 题目详情
11.设f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+sin(\frac{π}{2}+θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(-θ)}}$.
(1)化简 f(θ)
(2)求f($\frac{π}{3}$)的值.

分析 (1)直接利用同角三角函数的基本关系式化简求值;
(2)把$θ=\frac{π}{3}$代入(1)的化简结果求得答案.

解答 解:(1)$f(θ)=\frac{{2{{cos}^3}θ+{{sin}^2}θ+cosθ-3}}{{2+2{{cos}^2}θ+cosθ}}=\frac{{2{{cos}^3}θ+1-{{cos}^2}θ+cosθ-3}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{2{{cos}^3}θ-2-({{cos}^2}θ-cosθ)}}{{2+2{{cos}^2}θ+cosθ}}=\frac{{2({{cos}^3}θ-1)-cosθ(cosθ-1)}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{2(cosθ-1)({{cos}^2}θ+cosθ+1)-cosθ(cosθ-1)}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{(cosθ-1)(2{{cos}^2}θ+cosθ+2)}}{{2+2{{cos}^2}θ+cosθ}}=cosθ-1$;
(2)$f(\frac{π}{3})=cos\frac{π}{3}-1=-\frac{1}{2}$.

点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知角α、β的顶点与坐标原点重合,始边与x轴的非负半轴重合,点P(1,$\sqrt{3}$)、Q(3,-4)分别在角α、β的终边上,则sin(α-β)的值为(  )
A.$\frac{3\sqrt{3}-4}{10}$B.$\frac{3\sqrt{3}+4}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,0)且与直线x-2y-2=0垂直的直线方程是2x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)是定义在R上的奇函数,当x>0时,f′(x)sinx+f(x)cosx>0且f($\frac{π}{2}$)=1,则f(x)sinx≤1的整数解的集合为{-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列关系式正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow a$•$\overrightarrow b$是一个向量C.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$D.0•$\overrightarrow{AB}$=$\overrightarrow 0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3-tx2+3x在区间[1,3]上单调递减,则实数t的取值范围是(  )
A.(-∞,3]B.(-∞,5]C.[3,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)用分析法证明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用综合法证明不等式:若a+b+c=1,则ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.当x>0时,求f(x)=$\frac{12}{x}$+3x的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.a,b是任意实数,且a>b,则下列结论正确的是(  )
A.3-a<3-bB.$\frac{b}{a}$<1C.lg(a-b)>lg$\frac{1}{a-b}$D.a2>b2

查看答案和解析>>

同步练习册答案