精英家教网 > 高中数学 > 题目详情

【题目】设等差数列的前项和为,在数列中,,且,则的最小值为__________

【答案】8

【解析】

根据等差数列的定义和bn=a3n﹣2+a3n﹣1+a3n,且b1=6,b2=9,可求出a1=,d=,可得等差数列{an}的前n项和为Sn和{bn}的通项公式,再根据基本不等式即可求出.

设等差数列{an}的公差为d,

bn=a3n﹣2+a3n﹣1+a3n

b1=a1+a2+a3=6,b2=a4+a5+a6=9,

b2﹣b1=3d+3d+3d=9﹣6,

解得d=

a1+a1++a1+=6,

解得a1=

Sn=na1+d=n+n(n﹣1)=

bn=a3n﹣2+a3n﹣1+a3n=+(3n﹣2﹣1)×++(3n﹣1﹣1)×++(3n﹣1)×=3n+3=3(n+1),

=

,当且仅当n=3时取等号,

故答案为:8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:

井号

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;

(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值(精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个大转盘上,盘面被均匀地分成12份,分别写有1~1212个数字,其中246810126个区域对应的奖品是文具盒,而13579116个区域对应的奖品是随身听.游戏规则是转盘转动后指针停在哪一格,则继续向前前进相应的格数.例如:你转动转盘停止后,指针落在4所在区域,则还要往前前进4格,到标有8的区域,此时8区域对应的奖品就是你的,依此类推.请问:小明在玩这个游戏时,得到的奖品是随身听的概率是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱侧面底面.

(1)求证平面

(2)求棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时取得极大值,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率:

(1) 取出的2个球都是白球;

(2)取出的2个球中1个是白球,另1个是红球.

查看答案和解析>>

同步练习册答案