精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|x-a|.
(1)若不等式f(x)≤1的解集为{x|1≤x≤3},求实数a的值;
(2)若a=2,且存在实数x,使得m≥f(x)+f(x+5)成立,求实数m的取值范围.

分析 (1)解不等式,根据对应关系得到关于a的方程组,求出a的值即可;(2)法一:通过讨论x的范围,求出g(x)的最小值从而求出m的范围即可;法二:根据绝对值不等式的意义求出g(x)的最小值,求出m的范围即可.

解答 解:(1)由f(x)≤1得|x-a|≤1,
解得a-1≤x≤a+1.-------(2分)
又已知不等式f(x)≤1的解集为{x|1≤x≤3},
所以$\left\{\begin{array}{l}a-1=1\\ a+1=3\end{array}\right.$解得a=2.-------(4分)
(2)法一:当a=2时,f(x)=|x-2|,
设g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=$\left\{\begin{array}{l}{-2x-1,x<-3}\\{5,-3≤x≤2}\\{2x+1,x>2}\end{array}\right.$---(6分)
所以当x<-3时,g(x)>5;  当-3≤x≤2时,g(x)=5;
当x>2时,g(x)>5.综上可得,g(x)的最小值为5.---(8分)
存在实数x,使得m≥f(x)+f(x+5)成立,
则m≥[f(x)+f(x+5)]min
所以m的取值范围为[5,+∞)-------(10分)
法二:当a=2时,f(x)=|x-2|,
设g(x)=f(x)+f(x+5),
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),
得g(x)的最小值为5.------(8分)
存在实数x,使得m≥f(x)+f(x+5)成立,
则m≥[f(x)+f(x+5)]min
从而m的取值范围为[5,+∞)-----(10分)

点评 本题考查了函数的最值问题,考查解绝对值不等式问题以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A-BCD的外接球的体积为(  )
A.$\frac{125}{12}$πB.$\frac{125}{9}$πC.$\frac{125}{6}$πD.$\frac{125}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在矩形ABCD中,$AB=\frac{3}{2}$,BC=2,沿BD将矩形ABCD折叠,连结AC,所得三棱锥A-BCD的正视图和俯视图如图所示,则三棱锥A-BCD的体积为(  )
A.$\frac{6}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在R上的偶函数,对于任意的x∈R,有f(x+2)=f(x)-f(1),且当x∈[-1,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-1,3]内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,则a的取值范围是(  )
A.(1,3)B.(2,4)C.(3,5)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的圆锥曲线的标准方程并求出其离心率.
(1)焦点在x轴上,长轴长是10,短轴长8的椭圆方程;
(2)与椭圆$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦点,且过点$(\sqrt{15},4)$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设全集U=R,A={x|-2<x<3},B={x|-3≤x≤2}
(1)求A∩B
(2)求(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个圆柱和一个圆锥的轴截面分别是边长为a的正方形和正三角形,则它们的表面积之比为2:1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知两直线L1:x+(m+1)y+m-2=0和L2:2mx+4y+16=0.当m为-$\frac{2}{3}$时,L1与L2垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P(2,-1)(直角坐标系下的坐标)为曲线ρ2-2ρcosθ-24=0(极坐标系下的方程)的弦的中点,则该弦所在直线的直角坐标方程为x-y-3=0.

查看答案和解析>>

同步练习册答案