精英家教网 > 高中数学 > 题目详情
由经验得知,在某商场付款处排队等候付款的人数及其概率如表:
排队人数012345人以上
概    率0.10.160.30.30.10.04
则排队人数为2或3人的概率为
 
考点:古典概型及其概率计算公式
专题:概率与统计
分析:先通过概率统计表,分别找出排队人数为2人、3人的概率是多少,然后将其求和即可.
解答: 解:排队人数为2人、3人的概率分别是0.3、0.3,
所以排队人数为2或3人的概率为:
0.3+0.3=0.6.
故答案为:0.6.
点评:本题主要考查了概率分布表,考查了概率的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),x∈D,若存在x1、x2∈D,对任意的x∈D,都有f(x1)≤f(x)≤f(x2),则称f(x)为“幅度函数”,其中f(x2)-f(x1)称为f(x)在D上的“幅度”.
(1)判断函数f(x)=
3-2x-x2
是否为“幅度函数”,如果是,写出其“幅度”;
(2)已知x(y-1)-2n-1y+2n=0(x∈Z,n为正整数),记y关于x的函数的“幅度”为bn,求数列{bn}的前n项和Sn
(3)在(2)的条件下,令g(n)=lg
2
bn+1
+lg
2
bn+2
+…+lg
2
b2n
,求g(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,点A1在平面ABC上的射影为AC的中点D,AC=2,BB1=3,则AB1与底面ABC所成角的正切值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合I={1,2,3,4,5},选择I的两个非空集合A和B,满足A中最大的数小于B中最小的数,则不同的选择方法总数等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的中心为O,过其右焦点F的直线与两条渐近线交于A,B,
FA
BF
同向,且
FA
OA
,若|
OA
|+|
OB
|=2|
AB
|,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ln(4x-x2)的定义域为A,B=(-∞,-1]∪[3,+∞),则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1、C2的极坐标方程分别为ρ=2sinθ,ρcosθ+ρsinθ+1=0,则曲线C1上的点与曲线C2上的点的最近距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

球直径为d,当其内接正四棱柱体积最大时的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,下列结论中错误的是(  )
 
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
BC
+
DC
=
CA
D、
AD
+
CB
=
0

查看答案和解析>>

同步练习册答案