精英家教网 > 高中数学 > 题目详情
19.若tan(α+β)tanα=-5,则2cos(2α+β)+3cosβ=0.

分析 由tan(α+β)tanα=-5,可得sin(α+β)sinα=-5cos(α+β)cosα,可得2cos(2α+β)+3cosβ=2cos[(α+β)+α]+3cos[(α+β)-α]=5cos(α+β)cosα+sin(α+β)sinα.

解答 解:∵tan(α+β)tanα=-5,∴sin(α+β)sinα=-5cos(α+β)cosα,
∴2cos(2α+β)+3cosβ=2cos[(α+β)+α]+3cos[(α+β)-α]=5cos(α+β)cosα+sin(α+β)sinα=0,
故答案为:0.

点评 本题考查了三角函数和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若a>b>1,0<c<1,则(  )
A.ac<bcB.abc<bacC.ca<cbD.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的第5项恰好等于前5项之和,那么该数列的公比q=(  )
A.-1B.1C.1或-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{sinα-cosα}{sinα+cosα}$=3,则tan2α等于(  )
A.2B.$\frac{4}{3}$C.$-\frac{3}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}的前n项和为Sn.已知2Sn=3n+3,则{an}的通项公式为${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$\overline z$=$\frac{i}{1+i}$,则z•$\overline z$=(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{3-2x}$的定义域为$(-∞,\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}x-2,\;x≥0\\{2^x},\;x<0\end{array}$,则f(-1)=(  )
A.-1B.$\frac{1}{2}$C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数(1+i)z-2=i,则复数z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案