分析 利用递推关系即可得出,需要验证当n=1时的情况.
解答 解:∵2Sn=3n+3,
∴当n=1时,2a1=3+3,解得a1=3.
当n≥2时,2Sn-1=3n-1+3,
可得2an=3n-3n-1,解得an=3n-1.
∴${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$,
故答案为:${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$
点评 本题考查了递推关系的应用、分类讨论方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\sqrt{5}$ | C. | $\sqrt{17}$ | D. | $\sqrt{17}$或$\frac{\sqrt{17}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $m<\frac{5}{2}$ | B. | $m>\frac{5}{2}$ | C. | m<2 | D. | m>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>b>a | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13π}{4}$ | B. | $\frac{{\sqrt{13}π}}{2}$ | C. | 13π | D. | $\sqrt{13}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4} | B. | {-4,1,2,3} | C. | {1,2,3} | D. | {-1,4,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com