精英家教网 > 高中数学 > 题目详情
9.设a=log${\;}_{\frac{1}{3}}}$2,b=20.6,c=log43,则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.b>c>aD.a>c>b

分析 根据指数函数的图象和性质,对数函数的图象和性质,逐一分析a,b,c的大小,可得答案.

解答 解:a=log${\;}_{\frac{1}{3}}}$2<0,b=20.6>1,0<c=log43<1,
故b>c>a,
故选:C.

点评 本题考查的知识点是利用指数函数的图象和性质,对数函数的图象和性质,比较数的大小,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,坐标原点O到过点A(0,-b)和B(a,0)的直线的距离为$\frac{\sqrt{3}}{2}$.又直线y=kx+m(k≠0,m≠0)与该椭圆交于不同的两点C,D.且C,D两点都在以A为圆心的同一个圆上.
(1)求椭圆的方程;
(2)求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知无穷数列{an}的各项都是正数,其前n项和为Sn,且满足:a1=a,rSn=anan+1-1,其中a≠1,常数r∈N;
(1)求证:an+2-an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N*,都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=2•3n-1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x≤a\\ 2x+3,x>a\end{array}$,若方程f(x)+2x-8=0恰有两个不同实根,则实数a的取值范围是(  )
A.$[-4,\frac{5}{4}]∪[2,+∞)$B.[-4,2]C.$(\frac{5}{4},2]$D.$[{-4,\frac{5}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线C1:$\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}$(α为参数),再以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρsinθ+ρcosθ=10.
(1)求曲线C1的普通方程和曲线C的直角坐标方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}的前n项和为Sn.已知2Sn=3n+3,则{an}的通项公式为${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.程序如图,要使此程序能运算出“1+2+…+100”的结果,需将语句“i=i+1”加在(  ) 
A.①处B.②处C.③处D.④处

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,则f(-1)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知一个八面体的各条棱长均为1,四边形ABCD 为正方形,则下列命题中的假命题是(  )
A.不平行的两条棱所在的直线所成的角是60o或90o
B.四边形AECF是正方形
C.点A到平面BCE的距离为$\frac{\sqrt{6}}{3}$
D.该八面体的顶点不会在同一个球面上.

查看答案和解析>>

同步练习册答案