分析 (1)由cos2α+sin2α=1求得曲线C1的普通方程$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,由y=ρsinθ,x=ρcosθ,曲线C2的直角坐标方程x+2y=10;
(2)使用参数坐标求出点M到曲线C的距离,得到关于θ的三角函数,利用三角函数的性质求出距离的最值.
解答 解:(1)由$\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}$(α为参数),得$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,
曲线C1的普通方程$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,
∵y=ρsinθ,x=ρcosθ,
∴曲线C的直角坐标方程x+2y=10;
(2)设M(3cosθ,2sinθ),则距离d=$\frac{|3cosθ+4sinθ-10|}{\sqrt{5}}$≥$\frac{5}{\sqrt{5}}$=$\sqrt{5}$.
点评 本题考查参数方程与普通方程的转化,将极坐标方程转化成直角坐标方程,考查直线与圆的交点问题,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | Sn单调递增 | B. | Sn单调递减 | C. | Sn有最小值 | D. | Sn有最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{27}$ | B. | $\frac{16}{27}$ | C. | $\frac{4}{9}$ | D. | $\frac{20}{27}$或$\frac{16}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>b>a | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com